МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Правила
устройства электроустановок

шестое издание ,
дополненное С ИСПРАВЛЕНИЯМИ

Госэнергонадзор
Москва
2000

В настоящий исправленный тираж «Правила устройства электроустановок» шестого издания включены все изменения, оформленные в период с 31 августа 1985 года по 6 января 1999 года и согласованные в необходимой части с Госстроем России и Госгортехнадзором России.

Требования Правил являются обязательными для всех ведомств, организаций и предприятий, независимо от форм собственности, занимающихся проектированием и монтажом электроустановок.

РАЗДЕЛ 1
ОБЩИЕ ПРАВИЛА

ГЛАВА 1.1
ОБЩАЯ ЧАСТЬ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.1.1 . Правила устройства электроустановок (ПУЭ) распространяются на вновь сооружаемые и реконструируемые электроустановки до 500 кВ, в том числе на специальные электроустановки, оговоренные в разд. 7 настоящих Правил.

Устройство специальных электроустановок, не оговоренных в разд. 7, должно регламентироваться другими директивными документами. Отдельные требования настоящих Правил могут применяться для таких электроустановок в той мере, в какой они по исполнению и условиям работы аналогичны электроустановкам, оговоренным в настоящих Правилах.

Отдельные требования настоящих Правил можно применять для действующих электроустановок, если это упрощает электроустановку, если расходы по реконструкции обоснованы технико-экономическим расчетом или если эта реконструкция направлена на обеспечение тех требований безопасности, которые распространяются на действующие электроустановки.

По отношению к реконструируемым электроустановкам требования настоящих Правил распространяются лишь на реконструируемую часть электроустановок, например на аппараты, заменяемые по условиям короткого замыкания (КЗ).

1.1.2 . ПУЭ разработаны с учетом обязательности проведения в условиях эксплуатации планово-предупредительных и профилактических испытаний, ремонтов электроустановок и их электрооборудования , а также систематического обучения и проверки обслуживающего персонала в объеме требований действующих правил технической эксплуатации и правил техники безопасности.

1.1.3 . Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

Электроустановки по условиям электробезопасности разделяются Правилами на электроустановки до 1 кВ и электроустановки выше 1 кВ (по действующему значению напряжения).

1.1.4 . Открытыми или наружными электроустановками называются электроустановки, не защищенные зданием от атмосферных воздействий.

Электроустановки, защищенные только навесами, сетчатыми ограждениями и т.п., рассматриваются как наружные.

Закрытыми или внутренними электроустановками называются электроустановки, размещенные внутри здания, защищающего их от атмосферных воздействий.

1.1.5 . Электропомещениями называются помещения или отгороженные, например, сетками, части помещения, доступные только для квалифицированного обслуживающего персонала (см. 1.1.16 ) , в которых расположены электроустановки.

1.1.6 . Сухими помещениями называются помещения, в которых относительная влажность воздуха не превышает 60 %. При отсутствии в таких помещениях условий, приведенных в 1.1.10 - 1.1.12 , они называются нормальными.

1.1.7 . Влажными помещениями называются помещения, в которых пары или конденсирующая влага выделяется лишь кратковременно в небольших количествах, а относительная влажность воздуха более 60 %, но не превышает 75 %.

1.1.8 . Сырыми помещениями называются помещения, в которых относительная влажность воздуха длительно превышает 75 %.

1.1.9 . Особо сырыми помещениями называются помещения, в которых относительная влажность воздуха близка к 100 % (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой).

1.1.10 . Жаркими помещениями называются помещения, в которых под воздействием различных тепловых излучений температура превышает постоянно или периодически (более 1 сут) +35 °С (например, помещения с сушилками, сушильными и обжигательными печами, котельные и т.п.).

1.1.11 . Пыльными помещениями называются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т.п.

Пыльные помещения разделяются на помещения с токопроводящей пылью и помещения с нетокопроводящей пылью.

1.1.12 . Помещениями с химически активной или органической средой называются помещения, в которы х постоянно или в течение длительного времени содержатся агрессивные пары газы, жидкости, образуются отложения или плесень, разрушаю щие изо ляцию и токоведущие части электрооборудования.

1.1.13 . В отно шении опасности поражения людей электрическим током различаются:

1 . По мещения бе з по вы ш е нной опа сности, в которых отсутствуют ус ловия , создающие повышенную или особую опасность (см. пп. 2 и 3).

2 . Помещения с повышенной опасностью, характери зующиеся наличием в них одного или следующих условий , создающих повышенную опасность:

а) сырости или токопроводящей пыли (см. 1.1.8 и 1.1.11 );

б) токопроводящих полов (металлические , земляные, железобетонные , кирпичные и т.п. );

в) высокой температуры (см. 1.1.10);

г ) возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п. , с одной стороны , и к металлическ им корпусам электрооборудования, - с другой.

3 . Особоопасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

а) особой сырости (см. 1.1.9);

б) химически активной или органической среды (см. 1.1.12) ;

в) одновременно двух или более условий повышенной опасности (см. п. 2).

4 . Территории размещения наружных элект роустановок. В отношении опасности поражения людей электрическим током эти территории приравниваются к особо опасным помещениям.

1.1.14 . Маслонаполненными аппаратами называются аппараты, у которых отдельные элементы и все нормально искрящие части или части, между которыми образуется дуга , погруже ны в масло так, что исключается возможность соприкосновения между этими частями и окружающим воздухом.

1. 1 .15 . Номинальным значением параметра ( номинальным параметром) называется указанное изготовителем электротехнического устройства значение параметра, я вляющееся исходным для отсчета отклонений от этого значения при эксплуатации и испытаниях устройства.

1.1.16 . Квалифицирова нным обслуж ивающим персоналом называются специально подготовлен ные лица , прошедшие проверку знаний в объеме, обязательном для данной работы (долж ности), и имеющие квалификационную группу по технике безо пасности, предусмотренную Правилами техники безопасности при эксплуатации электроустановок.

1.1.17 . Для обозначения обязательности выполнения требований ПУЭ применяются слова «должен», «следует», «необходимо» и производные от них. Слова «как правило» означают, что данное требование является преобладающим, а отступление от него должно быть обосновано. Слово «допускается» означает, что данное решение применяется в виде исключения как вынужденное (вследствие стесненных условий, ограниченных ресурсов необходимого оборудования, материалов и т.п. ). Слово «рекомендуется» означает, что данное решение я вляется одним из лучших, но не обязательным.

1.1.18 . Принятые ПУЭ нормируемые значения величин с указанием «не менее» являются наименьшими, а с указанием «не более» - наибольшими. При выборе рациональных размеров и норм необходимо учитывать опыт эксплуатации и монтажа, требования электробезопасности и пожарной безопасности.

Все значения величин, приведенные в Правилах с предлогами «от» и «до», следует понимать «включительно».

ОБЩИЕ УКАЗАНИЯ ПО УСТРОЙСТВУ ЭЛЕКТРОУСТАНОВОК

1.1.19 . Применяемые в электроустановках электрооборудование и материалы должны соответствовать требованиям ГОСТ или технических условий, утвержденных в установленном порядке.

1.1.20 . Конструкция, исполнение, способ установки и класс изоляции применяемых машин, аппаратов, приборов и прочего электрооборудования, а также кабелей и проводов должны соответствовать параметрам сети или электроустановки, условиям окружающей среды и требованиям соответствующих глав ПУЭ.

1.1.21 . Применяемые в электроустановках электрооборудование , кабели и провода по своим нормированным, гарантированным и расчетным характеристикам должны соответствовать условиям работы данной электроустановки.

1.1.22 . Электроустановки и связанные с ними конструкции должны быть стойкими в отношении воздействия окружающей среды или защищены от этого воздействия.

1.1.23 . Строительная и санитарно-техническая части электроустановок (конструкции здания и его элементов, отопление, вентиляция, водоснабжение и пр.) должны выполняться в соответствии с действующими строительными нормами и правилами (СНиП) Госстроя СССР при обязательном выполнении дополнительных требований, приведенных в ПУЭ.

1.1.24 . Электроустановки должны удовлетворять требованиям действующих директивных документов о запрещении загрязнения окружающей среды, вредного или мешающего влияния шума, вибрации и электрических полей.

1.1.25 . В электроустановках должны быть предусмотрены сбор и удаление отходов: химических веществ, масла, мусора, технических вод и т.п. В соответствии с действующими требованиями по охране окружающей среды должна быть исключена возможность попадания указанных отходов в водоемы, систему отвода ливневых вод, овраги, а также на территории, не предназначенные для этих отходов.

1.1.26 . Проектирование и выбор схем, компоновок и конструкций электроустановок должны производиться на основе технико-экономических сравнений, применения простых и надежных схем, внедрения новейшей техники, с учетом опыта эксплуатации, наименьшего расхода цветных и других дефицитных материалов, оборудования и т.п.

1.1.27 . При опасности возникновения электрокоррозии или почвенной коррозии должны предусматриваться соответствующие мероприятия по защите сооружений, оборудования, трубопроводов и других подземных коммуникаций.

1.1.28 . В электроустановках должна быть обеспечена возможность легкого распознавания частей, относящихся к отдельным их элементам (простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка).

1.1.29 . Буквенно-цифровое и цветовое обозначения одноименных шин в каждой электроустановке должны быть одинаковыми.

Шины должны быть обозначены:

1 ) при переменном трехфазном токе: шины фазы А - желтым цветом, фазы В - зеленым, фазы С - красным, нулевая рабочая N - голубым, эта же шина, используемая в качестве нулевой защитной, - продольными полосами желтого и зеленого цветов;

2 ) при переменном однофазном токе: шина А, присоединенная к началу обмотки источника питания, - желтым цветом, а В, присоединенная к концу обмотки, - красным.

Шины однофазного тока, если они являются ответвлением от шин трехфазной системы, обозначаются как соответствующие шины трехфазного тока;

3 ) при постоянном токе: положительная шина (+) - красным цветом, отрицательная (-) - синим и нулевая рабочая М - голубым;

4 ) резервная как резервируемая основная шина; если же резервная шина может заменять любую из основных шин, то она обозначается поперечными полосами цвета основных шин.

Цветовое обозначение должно быть выполнено по всей длине шин, если оно предусмотрено также для более интенсивного охлаждения или для антикоррозийной защиты.

Допускается выполнять цветовое обозначение не по всей длине шин, только цветовое или только буквенно-цифровое обозначение либо цветовое в сочетании с буквенно-цифровым только в местах присоединения шин; если неизолированные шины недоступны для осмотра в период, когда они находятся под напряжением, то допускается их не обозначать. При этом не должен снижаться уровень безопасности и наглядности при обслуживании электроустановки.

1.1.30 . При расположении шин в распределительных устройствах (кроме КРУ заводского изготовления) необходимо соблюдать следующие условия:

1 . В закрытых распределительных устройствах при переменном трехфазном токе шины должны располагаться:

а) сборные и обходные шины, а также все виды секционных шин при вертикальном расположении А - В - С сверху вниз; при расположении горизонтально, наклонно или треугольником наиболее удаленная шина А, средняя В, ближайшая к коридору обслуживания С;

б) ответвления от сборных шин - слева направо А – В - С, если смотреть на шины из коридора обслуживания (при наличии трех коридоров - из центрального).

2 . В открытых распределительных устройствах при переменном трехфазном токе шины должны располагаться:

а) сборные и обходные шины, а также все виды секционных шин, шунтирующие перемычки и перемычки в схемах кольцевых, полуторных и т.п., должны иметь со стороны главных трансформаторов на высшем напряжении шину А;

б) ответвления от сборных шин в открытых распределительных устройствах должны выполняться так, чтобы расположение шин присоединений слева направо было А - В - С, если смотреть со стороны шин на трансформатор.

Расположение шин ответвлений в ячейках независимо от их размещения по отношению к сборным шинам должно быть одинаковым.

3 . При постоянном токе шины должны располагаться:

а) сборные шины при вертикальном расположении: верхняя М, средняя (-) , нижняя (+);

б) сборные шины при горизонтальном расположении: наиболее удаленная М, средняя (-) и ближайшая (+), если смотреть на шины из коридора обслуживания;

в) ответвления от сборных шин: левая шина М, средняя (-), правая (+), если смотреть на шины из коридора обслуживания.

В отдельных случаях допускаются отступления от требований , приведенных в пп. 1 - 3, если их выполнение связано с существенным усложнением электроустановок (например, вызывает необходимость установки специальных опор вблизи подстанции для транспозиции проводов ВЛ) или если применяются на подстанции две или более ступени трансформации.

1.1.31 . Для защиты от влияния электроустановок должны предусматриваться меры в соответствии с «Общесоюзными нормами допускаемых индустриальных радиопомех» и «Правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияний линий электропередачи».

1.1.32 . Безопасность обслуживающего персонала и посторонних лиц должна обеспечиваться путем:

применения надлежащей изоляции, а в отдельных случаях - повышенной;

применения двойной изоляции;

соблюдения соответствующих расстояний до токоведущих частей или путем закрытия, ограждения токоведущих частей;

применения блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;

надежного и быстродействующего автоматического отключения частей электрооборудования, случайно оказавшихся под напряжением , и поврежденных участков сети , в том числе защитного отключения;

заземления или зануления корпусов электрооборудования и элементов электроустановок, которые могут оказаться под напряжением вследствие повреждения изоляции;

выравнивания потенциалов;

применения разделительных трансформаторов;

применения напряжении 42 В и ниже переменного тока частотой 50 Гц и 110 В и ниже постоянного тока;

применения предупреждающей сигнализации, надписей и плакатов;

применения устройств, снижающих напряженность электрических полей;

использования средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в которых его напряженность превышает допустимые нормы.

1.1.33 . В электропомещениях с установками до 1 кВ допускается применение неизолированных и изолированных токоведущих частей без защиты от прикосновения, если по местным условиям такая защита не является необходимой для каких-либо иных целей (например, для защиты от механических воздействий). При этом доступные прикосновению части должны быть расположены так, чтобы нормальное обслуживания не было сопряжено с опасностью прикосновения к ним.

1.1.34 . В жилых, общественных и тому подобных помещениях устройства, служащие для ограждения и закрытия токоведущих частей, должны быть сплошные; в производственных помещениях и электропомещениях эти устройства допускаются сплошные, сетчатые или дырчатые.

Ограждающие и закрывающие устройства должны быть выполнены так, чтобы снимать или открывать их было можно лишь при помощи ключей или инструментов.

1.1.35 . Все ограждающие и закрывающие устройства должны обладать в соответствии с местными условиями достаточной механической прочностью. При напряжении выше 1 кВ толщина металлических ограждающих и закрывающих устройств должна быть не менее 1 мм. Устройства, предназначенные для защиты проводов и кабелей от механических повреждений, по возможности должны быть введены в машины, аппараты и приборы.

1.1.36 . Для защиты обслуживающего персонала от поражения электрическим током, от действия электрической дуги и т.п. все электроустановки должны быть снабжены средствами защиты, а также средствами оказания первой помощи в соответствии с «Правилами применения и испытания средств защиты, используемых в электроустановках».

1.1.37 . Пожаро- и взрывобезопасность электроустановок, содержащих маслонаполненные аппараты и кабели , а также электрооборудования , по крытого и пропитанного маслами, лаками, битумами и т.п. , обеспечивается выполнением требований, приведенных в соответствующих главах ПУЭ. При сдаче в эксплуата цию указан ные электроустановки должны быть снабжены противопожарными средствами и и нвентар ем в соответствии с действующими положениями.

ПРИСОЕДИНЕНИЕ ЭЛЕКТРОУСТАНОВОК К ЭНЕРГОСИСТЕМЕ

1.1 .3 8 . Присо единение электроустановки к энергосистеме производится в соответствии с «Правилами по льзования электрической энер гией».

ПЕРЕДАЧА ЭЛЕКТРОУСТАНОВОК В ЭКСПЛУАТАЦИЮ

1.1.39 . Вновь сооруженные и реконструированные электроустановки и установленное в них электрооборудование должны быть подвергнуты приемо-сдаточным испытаниям (см. гл. 1.8 ).

1.1.40 . Вновь сооруженные и реконструированные электроустановки вводятся в промышленную эксплуатацию только после приемки их приемочными комиссиями согласно действующим положениям.

ГЛАВА 1.2
ЭЛЕКТРОСНАБЖЕНИЕ И ЭЛЕКТРИЧЕСКИЕ СЕТИ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.2.1 . Настоящая глава Правил распространяется на все системы электроснабжения. Системы электроснабжения подземных, тяговых и других специальных установок, кроме требований настоящей главы, должны соответствовать также требованиям специальных правил.

1.2.2 . Энергетической системой (энергосистемой) называется совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и теплоты при общем управлении этим режимом.

1.2.3 . Электрической частью энергосистемы называется совокупность электроустановок электрических станций и электрических сетей энергосистемы.

1.2.4 . Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

1.2.5 . Электроснабжением называется обеспечение потребителей электрической энергией.

Системой электроснабжения называется совокупность электроустановок, предназначенных для обеспечения потребителей, электрической энергией.

1.2.6 . Централизованным электроснабжением называется электроснабжение потребителей от энергосистемы.

1.2.7 . Электрической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных (ВЛ) и кабельных линий электропередачи, работающих на определенной территории.

1.2.8 . Приемником электрической энергии (электроприемником) называется аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии.

1.2.9 . Потребителем электрической энергии называется электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.

1.2.10 . Независимым источником питания электроприемника или группы электроприемников называется источник питания, на котором сохраняется напряжение в пределах, регламентированных настоящими Правилами для послеаварийного режима, при исчезновении его на другом или других источниках питания этих электроприемников.

К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий:

1 ) каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания;

2 ) секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций (систем) шин.

ОБЩИЕ ТРЕБОВАНИЯ

1.2.11 . При проектировании систем электроснабжения и реконструкции электроустановок должны рассматриваться следующие вопросы:

1 ) перспектива развития энергосистем и систем электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжения;

2 ) обеспечение комплексного централизованного электроснабжения всех потребителей, расположенных в зоне действия электрических сетей, независимо от их ведомственной принадлежности;

3 ) ограничение токов КЗ предельными уровнями, определяемыми на перспективу;

4 ) снижение потерь электрической энергии.

При этом должны рассматриваться в комплексе внешнее и внутреннее электроснабжение с учетом возможностей и экономической целесообразности технологического резервирования.

При решении вопросов резервирования следует учитывать перегрузочную способность элементов электроустановок, а также наличие резерва в технологическом оборудовании.

1.2.12 . При решении вопросов развития систем электроснабжения следует учитывать ремонтные, аварийные и послеаварийные режимы.

1.2.13 . При выборе независимых взаимно резервирующих источников питания, являющихся объектами энергосистемы, следует учитывать вероятность одновременного зависимого кратковременного снижения или полного исчезновения напряжения на время действия релейной защиты и автоматики при повреждениях в электрической части энергосистемы, а также одновременного длительного исчезновения напряжения на этих источниках питания при тяжелых системных авариях.

1.2.14 . Требования 1.2.11 - 1.2.13 должны быть учтены на всех промежуточных этапах развития энергосистем и систем электроснабжения потребителей.

1.2.15 . Проектирование электрических сетей должно осуществляться с учетом вида их обслуживания (постоянное дежурство, дежурство на дому, выездные бригады и др.).

1.2.16 . Работа электрических сетей 3 - 35 кВ должна предусматриваться с изолированной или заземленной через дугогасящие реакторы нейтралью.

Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах:

в сетях 3 - 20 кВ, имеющих железобетонные и металлические опоры на ВЛ , и во всех сетях 35 кВ - более 10 А;

в сетях, не имеющих железобетонных и металлических опор на ВЛ: при напряжении 3 - 6 кВ - более 30 А; при 10 кВ - более 20 А; при 15 - 20 кВ - более 15 А;

в схемах 6 - 20 кВ блоков генератор - трансформатор (на генераторном напряжения - более 5 А.

При токах замыкания на землю более 50 А рекомендуется применение не менее двух заземляющих дугогасящих реакторов.

КАТЕГОРИИ ЭЛЕКТРОПРИЕМНИКОВ И ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ

1.2.17 . В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории:

Электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции , расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий.

1.2.18 . Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и т.п.

Если резервированием электроснабжения нельзя обеспечить необходимой непрерывности технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

1.2.19 . Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 сут. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току ВЛ. Допускается питание электроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 сут. допускается питание электроприемников II категории от одного трансформатора.

1.2.20 . Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сут.

УРОВНИ И РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ, КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ

1.2.21 . Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества напряжения электрической энергии в соответствии с требованиями ГОСТ 13109-87 «Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения».

1.2.22 . Устройства регулирования напряжения должны обеспечивать поддержание напряжения на тех шинах напряжением 6 - 20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100 % номинального в период наименьших нагрузок этих сетей.

1.2.23 . Устройства компенсации реактивной мощности, устанавливаемые у потребителя, должны обеспечивать потребление от энергосистемы реактивной мощности в пределах, указанных в условиях на присоединение электроустановок этого потребителя к энергосистеме.

1.2.24 . Выбор и размещение устройств компенсации реактивной мощности в электрических сетях следует производить в соответствии с действующей инструкцией по компенсации реактивной мощности.

ГЛАВА 1.3
ВЫБОР ПРОВОДНИКОВ ПО НАГРЕВУ, ЭКОНОМИЧЕСКОЙ ПЛОТНОСТИ ТОКА И ПО УСЛОВИЯМ КОРОНЫ

ОБЛАСТЬ ПРИМЕНЕНИЯ

1.3.1 . Настоящая глава Правил распространяется на выбор сечений электрических проводников (неизолированные и изолированные провода, кабели и шины) по нагреву, экономической плотности тока и по условиям короны. Если сечение проводника, определенное по этим условиям, получается меньше сечения, требуемого по другим условиям (термическая и электродинамическая стойкость при токах КЗ , потери и отклонения напряжения, механическая прочность, защита от перегрузки), то должно приниматься наибольшее сечение, требуемое этими условиями.

ВЫБОР СЕЧЕНИЙ ПРОВОДНИКОВ ПО НАГРЕВУ

1.3.2 . Проводники любого назначения должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т.п. При проверке на нагрев принимается получасовой максимум тока, наибольший из средних получасовых токов данного элемента сети.

1.3.3 . При повторно-кратковременном и кратковременном режимах работы электроприемников (с общей длительностью цикла до 10 мин и длительностью рабочего периода не более 4 мин) в качестве расчетного тока для проверки сечения проводников по нагреву следует принимать ток, приведенный к длительному режиму. При этом:

1 ) для медных проводников сечением до 6 мм2, а для алюминиевых проводников до 10 мм2 ток принимается, как для установок с длительным режимом работы;

2 ) для медных проводников сечением более 6 мм2, а для алюминиевых проводников более 10 мм2 ток определяется умножением допустимого длительного тока на коэффициент , где Тп.в - выраженная в относительных единицах длительность рабочего периода (продолжительность включения по отношению к продолжительности цикла).

1.3.4 . Для кратковременного режима работы с длительностью включения не более 4 мин и перерывами между включениями, достаточными для охлаждения проводников до температуры окружающей среды, наибольшие допустимые токи следует определять по нормам повторно-кратковременного режима (см. 1.3.3 ). При длительности включения более 4 мин, а также при перерывах недостаточной длительности между включениями наибольшие допустимые токи следует определять, как для установок с длительным режимом работы.

1.3.5 . Для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией, несущих нагрузки меньше номинальных, может допускаться кратковременная перегрузка, указанная в табл. 1.3.1 .

1.3.6 . На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10 % а для кабелей с поливинилхлоридной изоляцией до 15 % номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут, если нагрузка в остальные периоды времени этих суток не превышает номинальной.

На период ликвидации послеаварийного режима для кабелей напряжением до 10 кВ с бумажной изоляцией допускаются перегрузки в течение 5 сут в пределах, указанных в табл. 1.3.2.

Таблица 1.3.1 . Допустимая кратковременная перегрузка для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией

Коэффициент предварительной нагрузки

Вид прокладки

Допустимая перегрузка по отношению к номинальной в течение , ч

0,5

1,0

3,0

0,6

В земле

1,35

1,30

1,15

В воздухе

1,25

1,15

1,10

В трубах (в земле)

1,20

1,10

1,0

0,8

В земле

1,20

1,15

1,10

В воздухе

1,15

1,10

1,05

В трубах (в земле)

1,10

1,05

1,00

Таблица 1.3.2 . Допустимая на период ликвидации послеаварийного режима перегрузка для кабелей напряжением до 10 кВ с бумажной изоляцией

Коэффициент предварительной нагрузки

Вид прокладки

Допустимая перегрузка по отношению к номинальной при длительности максимума , ч

1

3

6

0,6

В земле

1,5

1,35

1,25

В воздухе

1,35

1,25

1,25

В трубах (в земле)

1,30

1,20

1,15

0,8

В земле

1,35

1,25

1,20

В воздухе

1,30

1,25

1,25

В трубах (в земле)

1,20

1,15

1,10

Для кабельных линий , находящихся в эксплуатации более 15 лет , перегрузки должны быть понижены на 10 %.

Перегрузка кабельных линий напряжением 20 - 35 кВ не допускается.

1.3.7 . Требования к нормальным нагрузкам и послеаварийным перегрузкам относятся к кабелям и установленным на них соединительным и концевым муфтам и концевым заделкам.

1.3.8 . Нулевые рабочие проводники в четырехпроводной системе трехфазного тока должны иметь проводимость не менее 50 % проводимости фазных проводников; в необходимых случаях она должна быть увеличена до 100 % проводимости фазных проводников.

1.3.9 . При определении допустимых длительных токов для кабелей , неизолированных и изолированных проводов и шин , а также для жестких и гибких токопроводов , проложенных в среде , температура которой существенно отличается от приведенной в 1.3.12 - 1.3.15 и 1.3.22 , следует применять коэффициенты , приведенные в табл. 1.3.3 .

Таблица 1.3.3 . Поправочные коэффициенты на токи для кабелей , неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха

Условная температура среды , °С

Нормированная температура жил , °С

Поправочные коэффициенты на токи при расчетной температуре среды, °С

-5 и ниже

0

+5

+10

+15

+20

+25

+30

+35

+40

+45

+50

15

80

1,14

1,11

1,08

1,04

1,00

0,96

0,92

0,88

0,83

0,78

0,73

0,68

25

80

1,24

1,20

1,17

1,13

1,09

1,04

1,00

0,95

0,90

0,85

0,80

0,74

25

70

1,29

1,24

1,20

1,15

1,11

1,05

1,00

0,94

0,88

0,81

0,74

0,67

15

65

1,18

1,14

1,10

1,05

1,00

0,95

0,89

0,84

0,77

0,71

0,63

0,55

25

65

1,32

1,27

1,22

1,17

1,12

1,06

1,00

0,94

0,87

0,79

0,71

0,61

15

60

1,20

1,15

1,12

1,06

1,00

0,94

0,88

0,82

0,75

0,67

0,75

0,47

25

60

1,36

1,31

1,25

1,20

1,13

1,07

1,00

0,93

0,85

0,76

0,66

0,54

15

55

1,22

1,17

1,12

1,07

1,00

0,93

0,86

0,79

0,71

0,61

0,50

0,36

25

55

1,41

1,35

1,29

1,23

1,15

1,08

1,00

0,91

0,82

0,71

0,58

0,41

15

50

1,25

1,20

1,14

1,07

1,00

0,93

0,84

0,76

0,66

0,54

0,37

-

25

50

1,48

1,41

1,34

1,26

1,18

1,09

1,00

0,89

0,78

0,63

0,45

-

ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ ПРОВОДОВ , ШНУРОВ И КАБЕЛЕЙ С РЕЗИНОВОЙ ИЛИ ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ

1.3.10 . Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией , шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой , поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 - 1.3.11 . Они приняты для температур: жил +65 °С , окружающего воздуха +25 °С и земли +15 °С.

При определении количества проводов , прокладываемых в одной трубе (или жил многожильного проводника) , нулевой рабочий проводник четырехпроводной системы трехфазного тока , а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Данные , содержащиеся в табл. 1.3.4 и 1.3.5 , следует применять независимо от количества труб и места их прокладки (в воздухе , перекрытиях , фундаментах).

Допустимые длительные токи для проводов и кабелей , проложенных в коробах , а также в лотках пучками , должны приниматься: для проводов - по табл. 1.3.4 и 1.3.5 , как для проводов , проложенных в трубах , для кабелей - по табл. 1.3.6 - 1.3.8 , как для кабелей , проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех , проложенных в трубах , коробах , а также в лотках пучками , токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 , как для проводов , проложенных открыто (в воздухе) , с введением снижающих коэффициентов 0 ,68 для 5 и 6; 0 ,63 для 7 - 9 и 0 ,6 для 10 - 12 проводов.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

1.3.11 . Допустимые длительные токи для проводов , проложенных в лотках , при однорядной прокладке (не в пучках) следует принимать как для проводов , проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей , прокладываемых в коробах , следует принимать по табл. 1.3.4 - 1.3.7 , как для одиночных проводов и кабелей , проложенных открыто (в воздухе) , с применением снижающих коэффициентов , указанных в табл. 1.3.12.

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

Таблица 1.3.4 . Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Сечение токопроводящей жилы , мм2

Ток , А , для проводов , проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

0,5

11

-

-

-

-

-

0,75

15

-

-

-

-

-

1

17

16

15

14

15

14

1,2

20

18

16

15

16

14,5

1,5

23

19

17

16

18

15

2

26

24

22

20

23

19

2,5

30

27

25

25

25

21

3

34

32

28

26

28

24

4

41

38

35

30

32

27

5

46

42

39

34

37

31

6

50

46

42

40

40

34

8

62

54

51

46

48

43

10

80

70

60

50

55

50

16

100

85

80

75

80

70

25

140

115

100

90

100

85

35

170

135

125

115

125

100

50

215

185

170

150

160

135

70

270

225

210

185

195

175

95

330

275

255

225

245

215

120

385

315

290

260

295

250

150

440

360

330

-

-

-

185

510

-

-

-

-

-

240

605

-

-

-

-

-

300

695

-

-

-

-

-

400

830

-

-

-

-

-

Таблица 1.3.5 . Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящей

жилы , мм2

Ток , А , для проводов , проложенных

открыто

в одной трубе

двух одножильных

трех одножильных

четырех одножильных

одного двухжильного

одного трехжильного

2

21

19

18

15

17

14

2,5

24

20

19

19

19

16

3

27

24

22

21

22

18

4

32

28

28

23

25

21

5

36

32

30

27

28

24

6

39

36

32

30

31

26

8

46

43

40

37

38

32

10

60

50

47

39

42

38

16

75

60

60

55

60

55

25

105

85

80

70

75

65

35

130

100

95

85

95

75

50

165

140

130

120

125

105

70

210

175

165

140

150

135

95

255

215

200

175

190

165

120

295

245

220

200

230

190

150

340

275

255

-

-

-

185

390

-

-

-

-

-

240

465

-

-

-

-

-

300

535

-

-

-

-

-

400

645

-

-

-

-

-

Таблица 1.3.6 . Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой , поливинилхлоридной , найритовой или резиновой оболочке , бронированных и небронированных

Сечение токопроводящей жилы , мм2

Ток* , А , для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

1,5

23

19

33

19

27

2,5

30

27

44

25

38

4

41

38

55

35

49

6

50

50

70

42

60

10

80

70

105

55

90

16

100

90

135

75

115

25

140

115

175

95

150

35

170

140

210

120

180

50

215

175

265

145

225

70

270

215

320

180

275

95

325

260

385

220

330

120

385

300

445

260

385

150

440

350

505

305

435

185

510

405

570

350

500

240

605

-

-

-

-

__________

* Токи относятся к проводам и кабелям как с нулевой жилой , так и без нее.

Таблица 1.3.7 . Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой , поливинилхлоридной и резиновой оболочках , бронированных и небронированных

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе

в воздухе

в земле

в воздухе

в земле

2,5

23

21

34

19

29

4

31

29

42

27

38

6

38

38

55

32

46

10

60

55

80

42

70

16

75

70

105

60

90

25

105

90

135

75

115

35

130

105

160

90

140

50

165

135

205

110

175

70

210

165

245

140

210

95

250

200

295

170

255

120

295

230

340

200

295

150

340

270

390

235

335

185

390

310

440

270

385

240

465

-

-

-

-

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7 , как для трехжильных кабелей , но с коэффициентом 0 ,92.

Таблица 1.3.8 . Допустимый длительный ток для переносных шланговых легких и средних шнуров , переносных шланговых тяжелых кабелей , шахтных гибких шланговых , прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы , мм2

Ток* , А , для шнуров , проводов и кабелей

одножильных

двухжильных

трехжильных

0,5

-

12

-

0,75

-

16

14

1,0

-

18

16

1,5

-

23

20

2,5

40

33

28

4

50

43

36

6

65

55

45

10

90

75

60

16

120

95

80

25

160

125

105

35

190

150

130

50

235

185

160

70

290

235

200

___________

* Токи относятся к шнурам , проводам и кабелям с нулевой жилой и без нее.

Таблица 1.3.9 . Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

Сечение токопроводящей жилы , мм2

Ток* , А , для кабелей напряжением , кВ

0,5

3

6

6

44

45

47

10

60

60

65

16

80

80

85

25

100

105

105

35

125

125

130

50

155

155

160

70

190

195

-

__________

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.10 . Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

Сечение токопроводящей жилы , мм2

Ток* , А , для кабелей напряжением , кВ

Сечение токопроводящей жилы , мм2

Ток* , А , для кабелей напряжением , кВ

3

6

3

6

16

85

90

70

215

220

25

115

120

95

260

265

35

140

145

120

305

310

50

175

180

150

345

350

___________

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.11 . Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1 ,3 и 4 кВ

Сечение токопроводящей жилы , мм2

Ток , А

Сечение токопроводящей жилы , мм2

Ток , А

Сечение токопроводящей жилы , мм2

Ток , А

1

20

16

115

120

390

1,5

25

25

150

150

445

2,5

40

35

185

185

505

4

50

50

230

240

590

6

65

70

285

300

670

10

90

95

340

350

745

Таблица 1.3.12 . Снижающий коэффициент для проводов и кабелей , прокладываемых в коробах

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов и кабелей , питающих

одножильных

многожильных

отдельные электроприемники с коэффициентом использования до 0 ,7

группы электроприемников и отдельные приемники с коэффициентом использования более 0 ,7

Многослойно и пучками

-

До 4

1,0

-

2

5-6

0,85

-

3-9

7-9

0,75

-

10-11

10-11

0,7

-

12-14

12-14

0,65

-

15-18

15-18

0,6

-

Однослойно

2-4

2-4

-

0,67

5

5

-

0,6

ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ КАБЕЛЕЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

1.3.12 . Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой , алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей:

Номинальное напряжение , кВ ............ До 3           6             10           20 и 35

Допустимая температура жилы

кабеля , °С .............................................. + 80             + 65        + 60        + 50

1.3.13 . Для кабелей , проложенных в земле , допустимые длительные токи приведены в табл. 1.3.13 , 1.3.16 , 1.3.19 - 1.3.22 . Они приняты из расчета прокладки в траншее на глубине 0 ,7 - 1 ,0 м не более одного кабеля при температуре земли + 15 °С и удельном сопротивлении земли 120 см К/Вт.

Таблица 1.3.13 . Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке , прокладываемых в земле

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением , кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

80

70

-

-

-

10

140

105

95

80

-

85

16

175

140

120

105

95

115

25

235

185

160

135

120

150

35

285

225

190

160

150

175

50

360

270

235

200

180

215

70

440

325

285

245

215

265

95

520

380

340

295

265

310

120

595

435

390

340

310

350

150

675

500

435

390

355

395

185

755

-

490

440

400

450

240

880

-

570

510

460

-

300

1000

-

-

-

-

-

400

1220

-

-

-

-

-

500

1400

-

-

-

-

-

625

1520

-

-

-

-

-

800

1700

-

-

-

-

-

Таблица 1.3.14 . Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке , прокладываемых в воде

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

трехжильных напряжением , кВ

четырехжильных до 1 кВ

до 3

6

10

16

-

135

120

-

25

210

170

150

195

35

250

205

180

230

50

305

255

220

285

70

375

310

275

350

95

440

375

340

410

120

505

430

395

470

150

565

500

450

-

185

615

545

510

-

240

715

625

585

-

Таблица 1.3.15. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке , прокладываемых в воздухе

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением , кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

55

45

-

-

-

10

95

75

60

55

-

-

16

120

95

80

65

60

80

25

160

130

105

90

85

100

35

200

150

125

110

105

120

50

245

185

155

145

135

145

70

305

225

200

175

165

185

95

360

275

245

215

200

215

120

415

320

285

250

240

260

150

470

375

330

290

270

300

185

525

-

375

325

305

340

240

610

-

430

375

350

-

300

720

-

-

-

-

-

400

880

-

-

-

-

-

500

1020

-

-

-

-

-

625

1180

-

-

-

-

-

800

1400

-

-

-

-

-

Таблица 1.3.16. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающими массами изоляцией в свинцовой или алюминиевой оболочке , прокладываемых в земле

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением , кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

60

55

-

-

-

10

110

80

75

60

-

65

16

135

110

90

80

75

90

25

180

140

125

105

90

115

35

220

175

145

125

115

135

50

275

210

180

155

140

165

70

340

250

220

190

165

200

95

400

290

260

225

205

240

120

460

335

300

260

240

270

150

520

385

335

300

275

305

185

580

-

380

340

310

345

240

675

-

440

390

355

-

300

770

-

-

-

-

-

400

940

-

-

-

-

-

500

1080

-

-

-

-

-

625

1170

-

-

-

-

-

800

1310

-

-

-

-

-

Таблица 1.3.17. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке , прокладываемых в воде

Сечение токопроводящей жилы , мм2

Ток А , для кабелей трехжильных напряжением , кВ

Четырехжильных до 1 кВ

До 3

6

10

16

-

105

90

-

25

160

130

115

150

35

190

160

140

175

50

235

195

170

220

70

290

240

210

270

95

340

290

260

315

120

390

330

305

360

150

435

385

345

-

185

475

420

390

-

240

550

480

450

-

Таблица 1.3.18. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке , прокладываемых в воздухе

Сечение токопроводящей жилы , мм2

Ток , А , для кабелей

одножильных до 1 кВ

двухжильных до 1 кВ

трехжильных напряжением , кВ

четырехжильных до 1 кВ

до 3

6

10

6

-

42

35

-

-

-

10

75

55

46

42

-

45

16

90

75

60

50

46

60

25

125

100

80

70

65

75

35

155

115

95

85

80

95

50

190

140

120

110

105

110

70

235

175

155

135

130

140

95

275

210

190

165

155

165

120

320

245

220

190

185

200

150

360

290

255

225

210

230

185

405

-

290

250

235

260

240

470

-

330

290

270

-

300

555

-

-

-

-

-

400

675

-

-

-

-

-

500

785

-

-

-

-

-

625

910

-

-

-

-

-

800

1080

-

-

-

-

-

Таблица 1.3.19. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с медными жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке , прокладываемых в земле и воздухе

Сечение токопроводящей жилы , мм2

Ток , А

Сечение токопроводящей жилы , мм2

Ток , А

в земле

в воздухе

в земле

в воздухе

16

90

65

70

220

170

25

120

90

95

265

210

35

145

110

120

310

245

50

180

140

150

355

290

Таблица 1.3.20. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с алюминиевыми жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке , прокладываемых в земле и воздухе

Сечение токопроводящей жилы , мм2

Ток , А

Сечение токопроводящей жилы , мм2

Ток , А

в земле

в воздухе

в земле

в воздухе

16

70

50

70

170

130

25

90

70

95

205

160

35

110

85

120

240

190

50

140

110

150

275

225

Таблица 1.3.21. Допустимый длительный ток для кабелей с отдельно освинцованными медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией , прокладываемых в земле , воде , воздухе

Сечение токопроводящей жилы , мм2

Ток , А , для трехжильных кабелей напряжением , кВ

20

35

при прокладке

в земле

в воде

в воздухе

в земле

в воде

в воздухе

25

110

120

85

-

-

-

35

135

145

100

-

-

-

50

165

180

120

-

-

-

70

200

225

150

-

-

-

95

240

275

180

-

-

-

120

275

315

205

270

290

205

150

315

350

230

310

-

230

185

355

390

265

-

-

-

Таблица 1.3.22. Допустимый длительный ток для кабелей с отдельно освинцованными алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией , прокладываемых в земле , воде , воздухе

Сечение токопроводящей жилы , мм2

Ток , А , для трехжильных кабелей напряжением , кВ

20

35

при прокладке

в земле

в воде

в воздухе

в земле

в воде

в воздухе

25

85

90

65

-

-

-

35

105

110

75

-

-

-

50

125

140

90

-

-

-

70

155

175

115

-

-

-

95

185

210

140

-

-

-

120

210

245

160

210

225

160

150

240

270

175

240

-

175

185

275

300

205

-

-

-

Таблица 1.3.23. Поправочный коэффициент на допустимый длительный ток для кабелей , проложенных в земле , в зависимости от удельного сопротивления земли

Характеристика земли

Удельное сопротивление см ×К/Вт

Поправочный коэффициент

Песок влажностью более 9 % , песчано-глинистая почва влажностью более 1 %

80

1,05

Нормальная почва и песок влажностью 7 - 9 % , песчано-глинистая почва влажностью 12 - 14 %

120

1,00

Песок влажностью более 4 и менее 7 % , песчано-глинистая почва влажностью 8 - 12 %

200

0,87

Песок влажностью до 4 % , каменистая почва

300

0,75

При удельном сопротивлении земли , отличающемся от 120 см К/Вт , необходимо к токовым нагрузкам , указанным в упомянутых ранее таблицах , применять поправочные коэффициенты , указанные в табл. 1.3.23.

1.3.14 . Для кабелей , проложенных в воде , допустимые длительные токи приведены в табл. 1.3.14 , 1.3.17 , 1.3.21 , 1.3.22 . Они приняты из расчета температуры воды + 15 °С.

1.3.15 . Для кабелей , проложенных в воздухе , внутри и вне зданий , при любом количестве кабелей и температуре воздуха + 25 °С допустимые длительные токи приведены в табл. 1.3.15 , 1.3.18 - 1.3.22 , 1.3.24 , 1.3.25 .

1.3.16 . Допустимые длительные токи для одиночных кабелей , прокладываемых в трубах в земле , должны приниматься , как для тех же кабелей , прокладываемых в воздухе , при температуре , равной температуре земли.

Таблица 1.3.24. Допустимый длительный ток для одножильных кабелей с медной жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке , небронированных , прокладываемых в воздухе

Сечение токопроводящей жилы , мм2

Ток* , А , для кабелей напряжением , кВ

до 3

20

35

10

85/-

-

-

16

120/-

-

-

25

145/-

105/110

-

35

170/-

125/135

-

50

215/-

155/165

-

70

260/-

185/205

-

95

305/-

220/255

-

120

330/-

245/290

240/265

150

360/-

270/330

265/300

185

385/-

290/360

285/335

240

435/-

320/395

315/380

300

460/-

350/425

340/420

400

485/-

370/450

-

500

505/-

-

-

625

525/-

-

-

800

550/-

-

-

____________

* В числителе указаны токи для кабелей , расположенных в одной плоскости с расстоянием в свету 35 - 125 мм , в знаменателе - для кабелей , расположенных вплотную треугольником.

1.3.17 . При смешенной прокладке кабелей допустимые длительные токи должны приниматься для участка трассы с наихудшими условиями охлаждения , если длина его более 10 м. Рекомендуется применять в указанных случаях кабельные вставки большего сечения.

1.3.18 . При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов , приведенных в табл. 1.3.26 . При этом не должны учитываться резервные кабели.

Прокладка нескольких кабелей в земле с расстояниями между ними менее 10 мм в свету не рекомендуется.

1.3.19 . Для масло- и газонаполненных одножильных бронированных кабелей , а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями.

1.3.20 . Допустимые длительные токи для кабелей , прокладываемых в блоках , следует определять по эмпирической формуле:

,

где Io - допустимый длительный ток для трехжильного кабеля напряжением 10 кВ с медными или алюминиевыми жилами , определяемый по табл. 1.3.27; a - коэффициент , выбираемый по табл. 1.3.28 в зависимости от сечения и расположения кабеля в блоке; b - коэффициент , выбираемый в зависимости от напряжения кабеля:

Номинальное напряжение кабеля , кВ ........... До 3          6             10

Коэффициент b ................................................ 1,09           1,05        1,0

c - коэффициент , выбираемый в зависимости от среднесуточной загрузки всего блока:

Среднесуточная загрузка S ср.сут / S ном ................ 1                0,85        0,7

Коэффициент c ................................................ 1                1,07        1,16

Резервные кабели допускается прокладывать в незанумерованных каналах блока , если они работают , когда рабочие кабели отключены.

Таблица 1.3.25. Допустимый длительный ток для одножильных кабелей с алюминиевой жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке , небронированных , прокладываемых в воздухе

Сечение токопроводящей жилы , мм2

Ток* , А , для кабелей напряжением , кВ

до 3

20

35

10

65/-

-

-

16

90/-

-

-

25

110/-

80/85

-

35

130/-

95/105

-

50

165/-

120/130

-

70

200/-

140/160

-

95

235/-

170/195

-

120

255/-

190/225

185/205

150

275/-

210/255

205/230

185

295/-

225/275

220/255

240

335/-

245/305

245/290

300

355/-

270/330

260/330

400

375/-

285/350

-

500

390/-

-

-

625

405/-

-

-

800

425/-

-

-

___________

* В числителе указаны токи для кабелей , расположенных в одной плоскости с расстоянием в свету 35 - 125 мм , в знаменателе - для кабелей , расположенных вплотную треугольником.

Таблица 1.3.26. Поправочный коэффициент на количество работающих кабелей , лежащих рядом в земле (в трубах или без труб)

Расстояние между кабелями в свету, мм2

Коэффициент при количестве кабелей

1

2

3

4

5

6

100

1,00

0,90

0,85

0,80

0,78

0,75

200

1,00

0,92

0,87

0,84

0,82

0,81

300

1,00

0,93

0,90

0,87

0,86

0,85

Таблица 1.3.27. Допустимый длительный ток для кабелей 10 кВ с медными или алюминиевыми жилами сечением 95 мм2, прокладываемых в блоках

Группа

Конфигурация блоков

№ канала

Ток I0, А для кабелей

медных

алюминиевых

I

1

191

147

II

2

3

173

167

133

129

III

2

154

119

IV

2

3

147

138

113

106

V

2

3

4

143

135

131

110

104

101

VI

2

3

4

140

132

118

103

102

91

VII

2

3

4

136

132

119

105

102

92

VIII

2

3

4

135

124

104

104

96

80

IX

2

3

4

135

118

100

104

91

77

X

2

3

4

133

116

81

102

90

62

XI

2

3

4

129

114

79

99

88

55

Таблицы 1.3.28. Поправочный коэффициент а на сечение кабеля

Сечение токопроводящей жилы, мм2

Коэффициент для номера канала в блоке

1

2

3

4

25

0,44

0,46

0,47

0,51

35

0,54

0,57

0,57

0,60

50

0,67

0,69

0,69

0,71

70

0,81

0,84

0,84

0,85

95

1,00

1,00

1,00

1,00

120

1,14

1,13

1,13

1,12

150

1,31

1,30

1,29

1,26

185

1,50

1,46

1,45

1,38

240

1,78

1,70

1,68

1,55

1.3.21 . Допустимые длительные токи для кабелей, прокладываемых в двух параллельных блоках одинаковой конфигурации, должны уменьшаться путем умножения на коэффициенты, выбираемые в зависимости от расстояния между блоками:

Расстояние между блоками, мм ....... 500       1000     1500     2000     2500       3000

Коэффициент .................................... 0,85      0,89      0,91      0,93      0,95        0,96

ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ ДЛЯ НЕИЗОЛИРОВАННЫХ ПРОВОДОВ И ШИН

1.3.22 . Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29 - 1.3.35 . Они приняты из расчета допустимой температуры их нагрева + 70 ° С при температуре воздуха +25 ° С.

Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:

Марка провода ............................................. ПА500         ПА6000

Ток, А ........................................................... 1340             1680

1.3.23 . При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33 , должны быть уменьшены на 5 % для шин с шириной полос до 60 мм и на 8 % для шин с шириной полос более 60 мм.

1.3.24 . При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).

Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80

Номинальное

сечени е, мм2

С ечени е (алюминий/сталь), мм2

Ток, А, для проводов марок

AC, ACK C, А СК, АСКП

M

A и АКП

M

A и АКП

вне п омещен ий

вн утри пом ещен ий

вне помещений

внутри помещений

10

10/1,8

84

53

95

-

60

-

16

16/2,7

111

79

133

105

102

75

25

25/4,2

142

109

183

136

137

106

35

35/6,2

175

135

223

170

173

130

50

50/8

210

165

275

215

219

165

70

70/11

265

210

337

265

268

210

95

95/16

330

260

422

320

341

255

120

120/19

390

313

485

375

395

300

120/27

375

-

150

150/19

450

365

570

440

465

355

150/24

450

365

150/34

450

-

185

185/24

520

430

650

500

540

410

185/29

510

425

185/43

515

-

240

240/32

605

505

760

590

685

490

240/39

610

505

240/56

610

-

300

300/39

710

600

880

680

740

570

300/48

690

585

300/66

680

-

330

330/27

730

-

-

-

-

-

400

400/22

830

713

1050

815

895

690

400/51

825

705

400/64

860

-

-

500

500/27

960

830

-

980

-

820

500/64

945

815

600

600/72

1050

920

-

1100

-

955

700

700/86

1180

1040

-

-

-

-


Таблица 1.3.30. Допустимы й длительный ток для шин круглого и трубчатого сечений

Диаметр, мм

Круглы е шины

Медные трубы

Алюминие вые трубы

Ста льные тр убы

Ток*, А

Внутренни й и наружный диаметры, мм

Ток, A

Внутренний и наружный диаметры, мм

Ток, A

Условный про ход, мм

Толщина стенки, мм

Нару жный диаметр, мм

Переменн ый ток, A

медные

алюминиевые

без ра зре за

с продольным разрезом

6

155/155

120/120

12/15

340

13/16

295

8

2,8

13,5

75

-

7

195/195

150/150

14/18

460

17/20

345

10

2,8

17,0

90

-

8

235/235

180/180

16/20

505

18/22

425

15

3,2

21,3

118

-

10

320/320

245/245

18/22

555

27/30

500

20

3,2

26,8

145

-

12

415/415

320/320

20/24

600

26/30

575

25

4,0

33,5

180

-

14

505/505

390/390

22/26

650

25/30

640

32

4,0

42,3

220

-

15

565/565

435/435

25/30

830

36/40

765

40

4,0

48,0

255

-

16

610/615

475/475

29/34

925

35/40

850

50

4,5

60,0

320

-

18

720/725

560/560

35/40

1100

40/45

935

65

4,5

75,5

390

-

19

780/785

605/610

40/45

1200

45/50

1040

80

4,5

88,5

455

-

20

835/840

650/655

45/50

1330

50/55

1150

100

5,0

114

670

770

21

900/905

695/700

49/55

1580

54/60

1340

125

5,5

140

800

890

22

955/965

740/745

53/60

1860

64/70

1545

150

5,5

165

900

1000

25

1140/1165

885/900

62/70

2295

74/80

1770

-

-

-

-

-

27

1270/1290

980/1000

72/80

2610

72/80

2035

-

-

-

-

-

28

1325/ 1360

1025/1050

75/85

3070

75/85

2400

-

-

-

-

-

30

1450/1490

1120/1155

90/95

2460

90/95

1925

-

-

-

-

-

35

1770/1865

1370/1450

95/100

3060

90/100

2840

-

-

-

-

-

38

1960/2100

1510/1620

-

-

-

-

-

-

-

-

-

40

2080/2260

16 10/1750

-

-

-

-

-

-

-

-

-

42

2200/2430

1700/1870

-

-

-

-

-

-

-

-

-

45

2380/2670

1850/2060

-

-

-

-

-

-

-

-

-

_____________

* В числителе приведены нагрузки при переменном токе , в з наменате ле - при постоянном.

Таблица 1.3.31. Допуст и мый длительный ток для шин прямоугольного с ечен ия

Размеры, м м

М едные шины

Алюминиевые шины

Стальны е шины

Ток*, А, при количестве полос на полюс или фазу

Размеры, мм

Ток*, A

1

2

3

4

1

2

3

4

15 х 3

210

-

-

-

165

-

-

-

16 х 2,5

55/70

20 х 3

275

-

-

-

215

-

-

-

20 х 2,5

60/90

25 х 1

340

-

-

-

265

-

-

-

25 х 2,5

75/110

30 х 4

475

-

-

-

365/370

-

-

-

20 х 3

65/100

40 х 4

625

- /1090

-

-

480

- /855

-

-

25 х 3

80/120

40 х 5

700/705

- /1250

-

-

540/545

- /965

-

-

30 х 3

95/140

50 х 5

860/870

- /1525

- /1895

-

665/670

- /1180

- /1470

-

40 х 3

125/190

50 х 6

955/960

- /1700

- /2145

-

740/745

- /1315

- /1655

-

50 х 3

155/230

60 х 6

1125/1145

1740/1990

2240/2495

-

870/880

1350/1555

1720/1940

-

60 х 3

185/280

80 х 6

1480/1510

2110/2630

2720/3220

-

1150/1170

1630/2055

2100/2460

-

70 х 3

215/320

100 х 6

1810/1875

2470/3245

3170/3940

-

1425/1455

1935/2515

2500/3040

-

75 х 3

230/345

60 х 8

1320/1345

2160/2485

2790/3020

-

1025/1040

1680/1840

2180/2330

-

80 х 3

245/365

80 х 8

1690/1755

2620/3095

3370/3850

-

1320/1355

2040/2400

2620/2975

-

90 х 3

275/410

100 х 8

2080/2180

3060/3810

3930/4690

-

1625/ 1690

2390/2945

3050/3620

-

100 х 3

305/460

120 х 8

2400/2600

3400/4400

4340/5600

-

1900/2040

2650/3350

3380/4250

-

20 x4

70/115

60 х 10

1475/1525

2560/2725

3300/3530

-

1155/1180

2010/2110

2650/2720

-

22 x4

75/125

80 х 10

1900/1990

3100/3510

3990/4450

-

1480/1540

2410/2735

3100/3440

-

25 x4

85/140

100 х 10

2310/2470

3610/4325

4650/5385

5300/6060

1820/1910

28 60/3350

3650/4160

4 150/4400

30х4

100/165

120 х 10

2650/2950

4100/5000

5200/6250

5900/6800

2070/2300

3200/3900

4100/4860

4 650/5200

40 х 4

130/220

50 x4

165/270

60х4

195/325

70х4

225/375

80х4

260/430

90х4

290/480

100 x4

325/535

_____________

* В числителе пр иве дены значения пер еменного тока, в знаменателе - по стоянного.


Таблица 1.3.32. Допуст и мый дл ительны й ток дл я неизолированных бронзовых и сталебронзовых проводов

Провод

Марк а прово да

Ток*, А

Про вод

Мар ка провода

Ток*, А

Бронзовый

Б-50

215

Бронзовый

Б-24 0

600

Б-70

265

Б-300

700

Б-95

330

Сталебронзовый

БС- 185

515

Б-120

380

БС-240

640

Б-150

410

БС-300

750

Б-185

500

БС-400

890

БС-500

980

_____________

* Токи даны дл я бронзы с удел ьным сопротивлением r20 = 0,03 Ом · мм2/м.

Таблица 1.3.33. До пуст имый длительный ток дл я неизолиро ванных стальных проводов

Марка провода

Ток, А

Марка провода

Ток, А

ПСО-3

23

ПС-25

60

ПСО-3,5

26

ПС-35

75

ПСО-4

30

ПС-50

90

ПСО-5

35

ПС-70

125

ПС-95

135

таблица 1 .3.34 . Допустимый длительный ток для четырехполосных шин с расположением полос по сторонам квадрата («полый пакет»)

Размеры, мм

Попер ечное сечен ие четыре хпо лосной ш ины, мм

То к А, н а пакет шин

h

b

h 1

H

м едн ых

алюминиевых

80

8

140

157

2560

5750

4550

80

10

144

160

3200

6400

5100

100

8

160

185

3200

7000

5550

100

10

1 64

188

4000

7700

6200

12 0

10

184

216

4800

9050

7300

Таблица 1.3.35. Допустимый дл и тель ный ток для шин коробчатого сечения

Размеры, мм

Поперечно е се чение одной шины, мм2

То к, А, на две ш ины

а

b

c

r

медные

алюминиевые

75

35

4

6

520

2730

-

75

35

5,5

6

695

3250

2670

100

45

4,5

8

775

3620

2820

100

45

6

8

1010

4300

3500

125

55

6,5

10

1370

5500

4640

150

65

7

10

1785

7000

5650

175

80

8

12

2440

8550

6430

200

90

10

14

3435

9900

7550

200

90

12

16

4040

10 500

8830

225

105

12,5

16

4880

12 500

10 300

250

115

12,5

16

5450

-

10 800

ВЫБОР СЕЧЕНИЯ ПРОВОДНИКОВ ПО ЭКОНО М ИЧЕСКОЙ ПЛОТНОСТИ ТОКА

1.3.25 . Сечения проводников должны быть проверены по экономической плотности тока. Экономически ц елесообра зное сечение S , мм2, опреде ляется из соотношения

где I - расчетный ток в час максимума энергосистемы, А; J эк - нормированное значение экономической плотности тока, А/мм2, для заданных условий работы, выбираемое по табл. 1.3.36.

Сечение , полученное в ре зульта те указанного расчета, округляется до ближайшего стандартного сечения. Расчет ны й ток принимаетс я для нормального режима работы , т. е. увеличение тока в послеаварийных и ремонтных режим ах сети не учитывается.

1.3.26 . Выбор сеч ений проводов линий электропередачи постоянного и переменного ток а н апряжением 330 кВ и выше, а также линий межсистемных свя зе й и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основ е технико-экономических расчетов.

1.3.27 . Увеличение количеств а линий или цепей сверх необходимого по условиям надежности электросн абже ния в целях удовле творения экономической плотности ток а производится на основе технико-экономичес кого расчета. При этом во избежание увеличения количества линий или цепе й допускается двукратно е превышение нормированных значе ни й, приведе нных в табл. 1.3.36 .

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.

Данными указаниями следует руководствоваться также при замене существу ющих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна уч итываться также полная стоимость всех работ по д емонтажу и монтажу оборудова ния линии, включая стоимость аппаратов и материалов.

Таблица 1.3.36. Эко н ом ическ ая плот ность тока

Пров о дн ики

Экономическая плотность тока, А/мм2, при числе часов использования максимума нагрузки в год

более 1000 до 3000

более 3000 до 5000

более 5000

Неизолированные провода и шины:

медные

2,5

2,1

1,8

алюминиевые

1,3

1,1

1,0

Кабели с бумажной и провода с резиновой и поливинилхлоридной изоляцией с жилами:

медными

3,0

2,5

2,0

алюминиевыми

1,6

1,4

1,2

К абели с резиновой и пластма ссовой изоляцией с жилами:

медными

3,5

3,1

2,7

ал юминиевыми

1 ,9

1,7

1,6

1.3.28 . Проверке по экономической плотности тока не подлежат:

сети промышлен ных предприятий и сооружений напряжен ием до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000 - 5000;

ответвления к отдельным электроприемникам напряжени ем до 1 кВ , а также осветительные сети промышленных предприятий, жилых и об щественных зданий;

сб орны е шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений;

проводники, идущие к резисторам, пусковым реостатам и т.п. ;

сети временных сооружений, а также устройства со сроком службы 3 - 5 лет.

1.3.29 . При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27 ):

1 . При максимуме нагрузки в ночное время экономическая плот ность тока увеличивается на 4 0 %.

2 . Для изолированных проводников сечением 16 мм2 и менее, экономическая плотность тока увеличивается на 40 %.

3 . Для линий одинакового сечения с п ответвляющимися нагру зкам и эко номическая плотность тока в начале л инии может быть увеличена в k у раз, причем k у определяется и з выражения

где I 1 , I 2 , ..., I n - нагрузки отдельных участков линии; l1, l2, ..., ln - длины отдельных участков линии; L - полная длина лин ии.

4 . При выборе сечений проводников для п итания п однотипных , взаиморезервируемых электроприемников ( например, насосов водоснабжения, преобразовательных агрегатов и т.д. ), из которых т одновременно находятся в работе, экономическая плотность тока может быть увеличена против значений, приведенных в табл. 1.3.36 , в k n раз, где k n равно:

1.3.3 0 . Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 - 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предн азначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах.

1.3.31 . Выбор экономических сечений проводов воздушных и жил каб ельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соотв етствующее э кономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение опр еделяется по расчетной нагруз ке этого ответвления.

1.3.32 . Для линий электропередачи напряжением 6 - 20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом приме няемых средств регулирования напряжения и компенсации р еа ктивной мощности.

ПРОВЕРКА ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОНЫ И РАДИОПОМЕХ

1.3.33 . При напряжении 35 кВ и выше проводники должны быть проверены по условиям обр азов ания короны с учетом среднегодовых значений плотности и температуры воздуха на высоте расположения данной электроустановки над уровнем моря, приведенного радиуса проводника, а также коэффициента негладкости проводников.

При этом наибольшая напряженность поля у поверхности любого из проводников, определенная при среднем эксплуатационном напряжении, должна быть не боле е 0,9 начальной напряжен ности электрического поля, соответствующей появлению общей короны.

Проверку следует проводить в соответствии с действующими руководящими указаниями.

Кроме того, для проводников необходима проверка по условиям допустимого уровня радиопомех от короны.

ГЛА ВА 1.4
ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ ПО УСЛОВИЯМ КОРОТКОГО ЗАМЫКАНИЯ

ОБЛАСТЬ ПРИМЕНЕНИЯ

1.4. 1 . Настоящая глава Правил распространяется на выбор и применение по условиям КЗ электрических аппаратов и проводников в электроустановках переменного тока частотой 50 Гц напряжением до и выше 1 кВ

ОБЩИЕ ТРЕБОВАНИЯ

1 .4.2 . По режиму КЗ должны проверяться (исключе ния см. в 1.4.3 ):

1 . В электроустановках выше 1 кВ:

а) электрические аппараты , токопроводы, кабели и др угие проводники, а также опорные и несущие конструкции для них;

б) воздушные ли нии электроперед ачи при ударном токе КЗ 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов КЗ.

Кроме того, для линий с расщепленными проводами должны быть проверены расстояния между распорками расщепленных проводов для предупреждения поврежден ия распорок и проводов при схлестывании.

Провода ВЛ, обору дованных у стройствами быстродейс твующего автоматического пов торного вк лючения, с ледует проверять и на термическую стойкость.

2 . В элек троуст ановк ах до 1 кВ - только распределительные щиты, токопроводы и силовые шкафы. Трансформаторы ток а по режиму КЗ не проверяются.

Аппараты, которые предназначены для отключения токов КЗ могут по условиям своей работы включ ать короткозамкнутую цепь, должны, кроме того, обладать способностью производить эти операци и при всех возможных токах КЗ.

Стойкими при токах КЗ являются те аппараты и проводники, которые при расчет ных условиях выдерживают воздействия этих токов, не подвергаясь электрическим, механическим и иным разрушениям или деформациям, препятствующим их дальнейшей нормальной эксплуатации.

1.4.3 . По режиму КЗ при напряжении выше 1 кВ не проверяются:

1 . Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А, - по электродинамической стойкости.

2 . Аппараты и проводники, защищенные плавкими предохранителями независимо от их номинального тока и типа, - по термической стойкости.

Цепь считается защищенной плавким предохранителем, если его отключающая способность выбрана в соответствии с требованиями настоящих Правил и он способен отключить наименьший возможный аварийный ток в данной цепи.

3 . Проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2,5 М · А и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

а) в электрической или технологической ч асти предусмотрена необходимая степень резервирова ния, выполненного так, что отключение указанных электроприемников не вызывает расстро йства технологического процесса;

б) повреждение проводника при КЗ не может вызвать взрыва или пожара;

в) возможна замена проводника без значительных затруднений.

4 . Пров одники к индивидуальным электроприемникам, указанным в п. 3, а также к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются неответственными по своему назначению и если для них выполнено хотя бы только условие, приведенное в п. 3, б.

5 . Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необход имый класс точности присоединенных измерительных приборов (например, расчет ных счетчиков), при этом на стороне вь ющего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета р екомендуется присоеди нять к трансформаторам тока на стороне ни зшего напряжения.

6 . Провода ВЛ (см. также 1.4.2 , п. 1, б).

7 . Аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере или за добавочным резистором, встроенным в предохранитель или установленным отдельно.

1.4.4 . При выборе расчетной схемы для определения токов КЗ следует исходить из предусматриваемых для данной электроустановки условий длит ельной ее работы и не считаться с кратковременными видоизменениями схемы этой электроустановки, которые не предусмотрены для длительной эксплуатации (например, при переключениях). Ремонтн ые и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не от носятся.

Расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматрива емая установка, не менее чем на 5 лет от запла нированного срока ввода ее в эксплуатацию.

При этом допустимо вести расчет токов КЗ приближенно для начального моме нта КЗ.

1.4. 5 . В качестве расчетного вида КЗ следует принимать:

1 . Для определения электродинамической стойкости аппаратов и ж естких шин с относящимися к ним поддерживающими и опор ными ко нструкциями - трехфазное КЗ.

2 . Для определения термической стойкости аппаратов и проводни ков - трехфазное КЗ ; на генераторном напряжении электростанций - трехфазное или двухфазное в зависимости от того, какое из них приводит к большему нагреву.

3 . Для выбора аппаратов по коммутационной способности - по большему из значений, получаемых для случаев трехфазного и однофазного КЗ на землю (в сетях с большими токами замыкания на зем лю); если выключатель характеризуется двумя значениями коммутационной способности - трехфазной и однофазной - соответственно по обоим значениям.

1 . 4.6 . Расчетный ток КЗ следует определять, исходя из условия повреждения в такой точке рассматриваемой цепи, при КЗ в которой аппараты и проводники этой цепи находятся в наиболее тяжелых условиях (исключения см. в 1.4.7 и 1.4.17 , п. 3). Со случаями одновременного замыкания на землю различных фаз в двух разных точках схемы допустимо не считаться.

1.4.7 . На реактированных ли ниях в закрытых распределительных устройствах проводники и аппараты, расположенные до реактора и отделенные от питающих сборных шин (на ответвлениях от линий - от элементов основной цепи) разделяющими полками, перекрытиями и т.п., набираются по току КЗ за реактором, если последний расположен в том же здании и соединение выполнено шинами.

Шинные ответвле ния от сборных шин до разделяющих полок и проходные изоляторы в последни х должны быть выбраны исходя и з КЗ до р еактора.

1.4.8 . При расчет е термич еской стойкости в качестве расчетного времени следует принимать сумму времен, получаемую от сложения времени действия основной защиты (с учетом действия АПВ), установленной у ближайшего к месту КЗ выключателя, и полного времени отключения этого выключателя (включая время горения дуги).

При наличии зоны нечувствительност и у основной защиты (по току, напряже нию, сопротивлению и т.п. ) терм ическую стойкость необходимо дополните льно проверять, исходя из времени де йствия защиты, реагирующей на повреждение в эт ой зоне, плюс полное время отключения выключателя. При этом в качестве расчетного тока КЗ сл едует принимать то значен ие его, которое соответствует этому месту поврежд ения.

Аппаратура и токопроводы, применяемые в цепях генераторов мощностью 60 МВт и боле е, а также в цепях блоков генератор - тра нсформатор такой же мощност и, должны проверяться по термической стойкости, исходя из времени прохождения тока КЗ 4 с.

ОПРЕДЕЛЕНИЕ ТОКОВ КО Р ОТКОГО ЗАМЫКАНИЯ ДЛЯ ВЫБОРА АППАРАТОВ И ПРОВОДНИКОВ

1.4.9 . В электроустановках до 1 кВ и вы ше при определен ии токов КЗ для выбора аппаратов и проводников и определения воздействия на несущие конструкции следует исходить из следующего:

1 . Все источники, участвующие в питании рассматриваемой точки КЗ, работают одновременно с номинальной нагрузкой.

2 . Все синхронные машины имеют автоматические регуляторы напряжения и устройства форсировки возбуждения.

3 . Короткое замыкание наступает в такой момент времени, при котор ом ток КЗ будет иметь наибольшее значение.

4 . Электродвижущие силы всех источников питания совпад ают по фазе.

5 . Расчетное напряжение каждой ступени принимается н а 5 % выше номинального напряжения сети.

6 . Должно учитываться влиян ие на токи КЗ присоединенных к данной сети синхронных компенсаторов, с инхронных и асинхронных электродвигателей. Влияние асинхронных электродвигателей на токи КЗ не учитывается при мощности электродвигателей до 100 кВТ в единице, если электродвигатели отделены от места КЗ одной ступенью трансформации, а также при любой мощности, если он и отделены от места КЗ двумя или более ступенями тра нсформации либо есл и ток от н их может поступать к месту КЗ только чер ез те элементы, через которые проходит основной ток КЗ от сети, и которые имеют с у щественное сопротивление (линии, трансформаторы и т.п.).

1.4.1 0 . В электроустановках выше 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные сопротивления электрич еских машин, силовы х трансформаторов и а втотрансформаторов, реакторов, во здушных и кабельных линий, а такж е токопроводов. Активное сопротивление следует учитывать только для ВЛ с проводами малых сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

1.4.11 . В электроустановках до 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные и активные сопротивления всех элементов цепи, включая активные сопротивления переходных контактов цепи. Допустимо пренебречь сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10 %.

1 .4.12 . В случае питания электрических сетей до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исходить из условия, что подведенное к трансформатору напряжение неи зменно и р авно его номинальному напряжению.

1.4.13 . Элементы цепи, защищенной плавким предохранителем с токоограничивающим действием , следует проверять на электродинамическую стойкость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

ВЫБОР ПРОВОДНИКОВ И ИЗОЛЯТОРОВ, ПРОВЕРКА НЕСУЩИХ КОНСТРУКЦИЙ ПО УСЛОВИЯМ ДИНАМИЧЕСКОГО ДЕЙСТВИЯ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

1.4.14 . Усилия, действующие на жесткие шины и передающиеся ими на изоляторы и поддерживающие жесткие конструкции, следует рассчитывать по наибольшему мгновенному значению тока трехфазного КЗ i у с учетом сдвига между токами в фазах и без учета механических колебаний шинной конструкции. В отдельных случаях (например, при предельных расчетных механических напряжениях) могут быть учтены механические колебания шин и шинных конструкций.

Импульсы силы, действующие на гибкие проводники и поддерживающие их изоляторы, выводы и конструкции, рассчитываются по среднеквадратическому (за время прохождения) току двухфазного замыкания между соседними фазами. При расщепленных проводниках и гибких токопроводах взаимодействие токов КЗ в проводниках одной и той же фазы определяется по действующему значению тока трехфазного КЗ.

Гибкие токопроводы должны проверяться на схлестывание.

1.4.15 . Найденные расчетом в соответствии с 1.4.14 механические усилия, передающиеся при КЗ жесткими шинами на опорные и проходные изоляторы , должны составить в случае применения одиночных изоляторов не более 60 % соответствующих гарантийных значений наименьшего разрушающего усилия; при спаренных опорных изоляторах - не более 100 % разрушающего усилия одного изолятора.

При применении шин составных профилей (многополосные, из двух швеллеров и т.д. ) механические напряжения находятся как арифметическая сумма напряжений от взаимодействия фаз и взаимодействия элементов каждой шины между собой.

Наибольшие механические напряжения в материале жестких шин не должны превосходить 0,7 временного сопротивления разрыву по ГОСТ.

ВЫБОР ПРОВОДНИКОВ ПО УСЛОВИЯМ НАГРЕВА ПРИ КОРОТКОМ ЗАМЫКАНИИ

1 .4.16 . Температура нагрева проводников при КЗ должна быть не выше следующих предельно допустимых значений, ° С:

Шины:

медные ...................................................................................................................... 300

алюминиевые ........................................................................................................... 200

стальные, не имеющие непосредственного соединения с аппаратами ............. 400

стальные с непосредственным присоединением к аппаратам ........................... 300

Кабели с бумажной пропитанной изоляцией на напряжение, кВ:

до 10 .......................................................................................................................... 200

20 – 220 ..................................................................................................................... 125

Кабели и изолированные провода с медными и

алюминиевыми жилами и изоляцией:

поливинилхлоридной и резиновой ....................................................................... 150

полиэтиленовой ....................................................................................................... 120

Медные неизолированные провода при тяжениях, Н/мм2:

менее 20 .................................................................................................................... 250

20 и более ................................................................................................................. 200

Алюминиевые неизолированные провода при тяжениях, Н/мм2:

менее 10 .................................................................................................................... 200

10 и более ................................................................................................................. 160

Алюминиевая часть сталеалюминиевых проводов ............................................. 20 0

1.4.17 . Проверка кабелей на нагрев токами КЗ в тех случаях, когда это требуется в соответствии с 1.4.2 и 1.4.3 , должна производиться для:

1 ) одиночных кабелей одной строительной длины, исходя из КЗ в начале кабеля;

2 ) одиночных кабелей со ступенчатыми сечениями по длине, исходя из КЗ в начале каждого участка нового сечения;

3 ) пучка из двух и более параллельно включенных кабелей, исходя из КЗ непосредственно за пучком (по сквозному току КЗ).

1.4. 1 8 . При проверке на термическую стойкость аппаратов и проводников линий, оборудованных устройствами быстродействующего АПВ, должно учитываться повышение нагрева из-за увеличения суммарной продолжительности прохождения тока КЗ по так им линиям.

Расщепленные провода ВЛ при проверке на нагрев в условиях КЗ рассматриваются как один провод суммарного сечения.

ВЫБОР АППАРАТО В ПО КОММУТАЦИОННОЙ СПОСО БНОСТИ

1.4.19 . Выключатели выше 1 кВ следует выб ирать:

1 ) по отключающей способности с учетом параметров восстанавливающегося напряжения;

2 ) по включающей способности. При этом выключатели генераторов, установленные на стороне ге нераторного напряжения, проверяются только на несинхронное включение в усло виях противофазы.

1.4.20 . Предохранители следует выбирать по отключающей способности. При этом в качестве расчетного тока следует принимать действующее значение периодической составляющей начального ток а КЗ без учета токоограничивающей способности предохранителей.

1.4.21 . Выключатели нагрузки и короткозамыкатели следует выбирать по предельно допустимому току, возникающему при включении на КЗ.

1.4.22 . Отделители и разъединители не требуется проверять по коммутационной способности при КЗ. При использова нии отделителей и разъединителей для отключения - включени я ненагруженных линий, ненагруженных трансформаторов или уравнительных токов параллельных цепей отделители и разъединители следует проверять по режиму такого отключения - включения.

ГЛАВА 1.5
УЧЕТ ЭЛЕКТ РОЭНЕРГИИ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.5.1 . Настоящая глава Правил содержит требования к учету электроэнергии в электроустановках. Дополнительные требования к учету электроэнергии в жилых и общественных зданиях приве дены в гл. 7.1 .

1.5.2 . Расчетным учетом электроэнергии называется учет выработанной, а также отпущенной потребителям электроэнергии для денежного расчета за нее.

Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками.

1.5.3 . Техническим (контрольным) учетом электроэнергии называется учет для контроля расхода электроэнергии внутри электростанций, подстанций, предприятий, в зданиях, кв артирах и т.п.

Счетчики, устанавливаемые для технического учета, называются счетчиками технического учета.

ОБЩИЕ ТРЕБОВАНИЯ

1.5.4 . Учет ак тивной электроэнергии должен обеспечивать опред еление количества э нергии:

1 ) выработ анно й генераторам и электростанций;

2 ) потребленной н а собственные и хозяйс твенные (раздельно) нужды электростанций и подстанций;

3 ) отпущенной потребителям по линиям, отходящим от шин электростанции непосредственно к потр ебителям;

4 ) переданной в другие энергосистемы или полученной от них;

5 ) отпущенной потребителям из электрической сети.

Кроме того, учет активной э лектроэнергии должен обеспечивать возможность:

определения поступления электроэнергии в электрические сети разны х классов напряжений энергосистемы;

составления балансов электроэнергии для хозрасчетных подразделений энергосистемы;

контроля за соблюдение м потребителями заданных им режимов потребления и баланса электроэнергии.

1.5.5 . Учет реактивной электроэнергии должен обеспечивать возможность определения количества реактивной электроэнергии, полученной потребителем от электроснабжающей орга низации или переданной ей, только в том случае, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.

ПУНКТЫ УСТАНОВКИ СРЕДСТВ УЧЕТА ЭЛЕКТРОЭНЕРГИИ

1.5.6 . Счетчики для расчета электроснабжающей организации с потребителями электроэнергии рекомендуется устанавливать на границе раздела сети (по балансовой принадлежности) электроснабжающей организации и потребителя.

1.5.7 . Расчетные счетчики активной электроэнергии на электростанции должны устанавливаться:

1 ) для каждого генератора с таким расчетом, чтобы учитывалась вся выработанная генератором электроэнергия;

2 ) для всех присоединений шин генераторного напряжения, по которым возможна реверсивная работа, - по два счетчика со стопорами;

3 ) для межсистемных линий электропередачи - два счетчика со стопорами, учитывающих отпущенную и полученную электроэнергию;

4 ) для линий всех классов напряжений, отходящих от шин элек тростанций и принадлежащих потребителям (см. также 1.5.10 ).

Для линий до 10 кВ, отходящих от шин электростанций, во всех случаях должны быть выполнены цепи учета, сборки зажимов (см. 1.5.23), а также предусмотрены места для установки счетчиков;

5 ) для всех трансформаторов и линий, питающих шины основного напряжения ( выше 1 кВ) собственных нужд (СН).

Счетчики устанавливаются на стороне высшего напряжения; если трансформаторы СН эле ктростанции п ита ются от шин 3 5 кВ и выше или ответвлением от блоков на напряжении выше 10 кВ, допускается установка счетчиков на стороне низшего напряжения трансформаторов;

6 ) для линий хозяйственных нужд (например, питание механизмов и установок ремонтно-производственных баз) и посторонних потребителей, присоединенных к распределительному устройству СН э лектростанций ;

7 ) для каждого обходного выключателя или для шиносоединительного (междусекционного) выключателя, используемого в качестве обходного для присоединений, имеющих расчетный учет, - два счетчи ка со стопорами.

На электростанциях, оборудуемых системами централи зованного сбора и обработки информации, указанные системы следует использовать для централизованного расчетного и технического учета электроэнергии. На остальных электростанциях рекомендуется применение автоматизированной системы учета электроэнергии.

1.5.8 . На электростанциях мощностью до 1 МВт расчетные счетчики активной электроэнергии должны устанавливаться только для генераторов и трансформаторов СН или только для трансформаторов СН и отходящих линий.

1.5.9 . Расчетные счетчики активной электроэнергии на подстанции э нергосистемы должны устанавливаться :

1 ) для каждой отходящей линии электропередачи, принадлежащей потребителям (см. также 1.5.10 );

2 ) для межсистемных линий электропередачи - по два счетчика со стопорами, учитывающих отпущенную и полученную электроэнергию; при наличии ответвлений от этих линий в другие энергосистемы - по два счетчика со стопорами, учитывающих полученную и отпущенную электроэнергию, на вводах в подстанции этих энергосистем;

3 ) на трансформаторах СН;

4 ) для линий хозяйственных нужд или посторонних потребителей (поселок и т.п. ), присоединенных к шинам СН ;

5 ) для каждого обходного выключателя или для шиносоединительного (междусекционного) выключателя, используемого в качестве обходного для присоединений, имеющих расчетный учет, - два счетчика со стопорами.

Для линий до 10 кВ во всех случаях должны быть выполнены цепи учета, сборки зажимов (см. 1.5.23), а также предусмотрены места для установки счетчиков.

1.5.10 . Расчетные счетчики, предусматриваемые в соответствии с 1.5.7 , п. 4 и 1.5.9 , п. 1, допускается устанавливать не на питающем, а на приемном конце линии у потребителя в случаях, когда трансформаторы тока на электростанциях и подстанци ях, выбранные по току К З или по характеристикам дифференциальной защиты шин, не обеспечивают требуемой точности учета электроэнергии.

1.5.11 . Расчетные счетчики активной электроэнергии на подстанции, принадлежащей потребителю, должны уста навливаться:

1 ) на вводе (приемном конце) линии электропередач и в подстанцию потребителя в соответствии с 1.5.10 при отсутствии электрической с вязи с другой подстанцией энергосистемы или другого потребителя на питающем напряжении;

2 ) на стороне высшего напряжения трансформаторов подстанции потребителя при наличии электрической связи с другой подстанцией энергосистемы или наличии другого потребителя на питающем напряжении.

Допускается установка счетчиков на стороне низшего напряжения трансформаторов в случаях, когда трансформаторы тока, выбранные по току КЗ или по характеристикам дифференциальной защиты шин, не обеспечивают требуемой точности учета электроэнергии, а также когда у имеющихся встроенных трансформаторов тока отсутствует обмотка класса точности 0,5.

В случае, когда установка кВ.

Для предприятия, рассчитывающегося с электроснабжающей организацией по максимуму заявленной мощности, следует предусматривать установку счетчика с указателем максимума нагрузки при наличии одного пункта учета, при наличии двух или более пунктов учета - применение автоматизированной системы учета электроэнергии;

3 ) на стороне среднего и низшего напряжений силовых трансформаторов, если на стороне высшего напряжения применение измерительных трансформаторов не требуется для других целей;

4 ) на трансформаторах СН, если электроэнергия, отпущенная на собственные нужды , не учитывается другими счетчиками; при этом счетчики рекомендуется устанавливать со стороны низшего напряжения;

5 ) на границе раздела основного потребителя и постороннего потребителя (субабонента), если от линии или трансформаторов потребителей питается еще посторонний потребитель, находящийся на самостоятельном балансе.

Для потребителей каждой тарификационной группы следует устанавливать отдельные расчетные счетчики.

1.5.12 . Счетчики реактивной электроэнергии должны устанавливаться:

1 ) на тех же элементах схемы , на которых установлены счетчики активной электроэнергии для потребителей, рассчитывающихся за электроэнергию с учетом разрешенной к использованию реактивной мощности ;

2 ) на присоединениях источников реактивной мощности потребителей, если по ним производится расчет за электроэнергию, выданную в сеть энергосистемы, или осуществляется контроль заданного режима работы.

Если со стороны предприятия с согласия энергосистемы производится выдача реактивной электроэнергии в сеть эн ергосистемы , необходимо устанавливать два счетчика реактивной электроэнергии со стопорами в тех элементах схемы, где установлен расчетный счетчик активной электроэнергии. Во всех других с лучаях дол жен устанавливаться один счетчик реактив ной электроэнергии со стопором.

Дл я предприятия, рассчитывающегося с энергоснабж ающей организацией по максимуму разрешенной ре активной мощности, следует предусматривать установку счетчика с указате лем максимума нагрузки, при наличии двух или более пунктов учета - применение автоматиз ированной системы учета электроэнергии.

ТРЕБОВАНИЯ К РАСЧЕТНЫМ СЧЕТЧИКАМ

1.5.13 . Каждый установленный расч етный счетчик должен иметь на винтах, крепящих кожух счетчика, пломбы с клеймом госповерителя, а на зажимной крышке - пломбу энергоснабжающей организации.

На вновь устанавливаемых трехфазных счетчиках должны быть пломбы государственной поверки с давностью не более 12 мес, а на однофазных счетчиках - с давностью не более 2 лет.

1.5.14 . Учет активной и реактивной электроэнергии трехфазного тока должен производиться с помощью трехфазных счетчиков.

1.5.15 . Допустимые классы точности расчетных счетчиков активной электроэнергии для различных объектов учета приведены н иже:

Генераторы мощностью более 50 МВт, межсистемные

линии электропер едачи 220 кВ и выше, трансформаторы

мощностью 63 MB · А и более ............................................................................... 0,5 (0,7 )*

Ген ераторы мо щностью 12 - 50 МВт, межсистемные линии

электропередачи 110 - 150 кВ, трансформаторы мощностью 10 - 40 MB · А .... 1,0

Прочие объекты учета .......................................................................................... 2,0

_____________

* Значе ние , указанное в скобках о тносится к импортируемым счет чикам.

Класс точности счетчиков реактивной электроэнергии должен выбираться на одну ступень ниже соответствующего класса точности счетчиков активной электроэнергии.

УЧЕТ С ПРИМЕНЕНИЕМ ИЗМ Е РИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

1.5.16 . Класс точности трансформаторов ток а и напряжени е для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5. Допускается использование трансформаторов напряжения класса точности 1,0 для включения расчетных счетчиков класса точ ности 2,0.

Для присоединения счетчиков технического учета допускается использова ние трансформаторов тока класса точности 1,0, а также встроенных трансформаторов тока класса точности ниже 1,0, если для получения класса точности 1,0 требуется установка дополнительных комплектов трансформаторов тока.

Трансформаторы напряжения, используемые для присоединения счетчиков технического учета, могут иметь класс точности ниж е 1,0.

1.5.17 . Допускается применение трансформаторов тока с завышенным коэффици ентом трансформации (по условиям электродинамической и термич еской стойкости или защиты шин), если при максимальной нагрузке присоединения то к во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке - не мене е 5 %.

1.5.18 . Присо единение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, как правило, отдельно от цепей защиты и совместно с электроизмерите льными приборами.

Допускается производить совместное присоединение токовых цепей, ес ли раздельное их присоединение требует установки дополнительных трансформаторов тока, а совместное присоединение не приводит к снижению класса точности и надеж ности цепей трансформаторов тока, служащих для учета, и обеспечивает необходимые характеристики устройств релейной защиты.

Использование промежуточных трансформаторов тока для вк лючения расчетных счетчиков запрещается (исключение см. в 1.5.21).

1 .5.19 . Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна пр евышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжен ия в этих цепях составляли не более 0,25 % номинального напряж ения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применен ие отдельных кабелей от трансформаторов напряжения до счетч иков.

Потери напряжения от трансформаторов напряжения до счетчи ков технического учета должны составлять не более 1,5 % номинального напряжения.

1.5.20 . Для присоединения расчетных счетчиков на линиях электропередачи 110 кВ и выше допускается установка дополнительных трансформаторов тока (при отсутствии вторичных обмото к для присоедине ния счетчиков, для обеспечения работы счетчика в тр ебуемом классе точности, по условиям нагрузки на вторичные обмотки и т.п. ). См. также 1.5.18 .

1.5.21 . Для обходных выключателей 110 и 220 кВ со встроенными трансформаторами тока допускается снижение класса точности этих трансформаторов тока на одну ступень по отношению к указанному в 1.5.16 .

Для обходного выключателя 110 кВ и шиносоединительного (междусекционного) выключателя 110 кВ, исполь з уемого в качестве обходного, с отдельно стоя щими трансформаторами тока (имеющими не более трех вторичных обмоток) допускается включение токовых цепей сч етчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5; при этом допускает ся снижение класса точности трансформаторов тока на одну ступень.

Такое же включение счетчиков и снижение класса точност и трансформаторов ток а допуск ается для шиносоединительного (междусекционного) выключ ателя на напряжение 220 кВ, исполь зуемого в качестве обходно го, с отдельно стоящими трансформаторами тока и на напряжение 110 - 220 кВ со встроенными трансформаторами тока.

1.5.22 . Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четырех- и пятистержневые, применяемые для контроля изоляции.

1.5.23 . Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.

Зажимы должны обеспечивать закорачивание вторич ных цепей трансформаторов ток а, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.

Конструкция сборок и коробок зажимов расчетных счетчиков должна обеспечивать возможность их пломбирования.

1.5.24 . Трансформаторы напряжения, используемые только для учета и защ ищенные на стороне высш его напряжения предохранителями, должны иметь контроль целости предохранителей.

1.5.25 . При нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоедине ния на трансформаторы напряжения соответствующих систем шин.

1.5.2 6 . На подстанциях потребителей конструкция решеток и дверей камер, в которых установлены предохранители на стороне высшего напряжения трансформаторов напряжения, используемых для расчетного учета, должна обеспечивать возможность их пломбирования.

Рукоятки приводов разъединителей трансформаторов напряжения, используемых для расчетного учета, должны иметь приспособления для их пломбирования.

УСТАНОВКА СЧЕТЧИКОВ И ЭЛЕКТРОПРОВОДКА К НИМ

1.5.27 . Счетчики должны размещаться в легко доступных для обслуживания сухих помещениях, в достаточно свободном и не стесненном для работы месте с температурой в зимнее время не ниже 0 °С.

Счетчики общепромышленного исполнения не разрешается устанавливать в помещениях, где по производственным условиям температура может часто превышать +40 °С, а также в помещениях с агрессивными средами.

Допускается размещение счетчиков в неотапливаемых помещениях и коридорах распределительных устройств электростанций и подстанций, а также в шкафах наружной установки. При этом должно быть предусмотр ено стационарное их утепление на зимнее время посредством утепляющих шкафов, колпаков с подогревом воздуха внутри них электрической лампой или нагревательным элементом для об еспечения внутри колпак а положительно й температуры, но не выше +20 °С.

1.5.28 . Счетчики , предн азн аченные для учета электро энергии , выр абатываемой генер аторами электростанций, следует устан авливать в помещения х со средне й температурой окружающего воздуха +15 - +25 °С. При отсутствии таких помещений счетчики рекомендуется помещать в специ альных шкафах, где должна поддерживаться указанная температура в течение всего год а.

1.5.29 . Счетчики должны устанавливаться в шкафах , камерах комплектных распределительных устройств (КРУ, КРУН), на панелях, щитах, в нишах , на стенах , имеющих жесткую конструкцию.

Допускается крепление счетчиков на деревянных, пл астм ассовых или металлических щитках.

Высота от пола до коробки зажимов счетчиков должна быть в пределах 0,8 - 1,7 м. Допуск ается высота менее 0,8 м, но не менее 0,4 м.

1.5.30 . В места х, где имеется оп асность механических повреждений счетчиков или их загря знения , или в местах, доступных для посторонних лиц (проходы , лестничные клетки и т.п. ), для счетчиков должен предусматриваться запирающийся шкаф с окошком на уровне циферблата. Аналогичные шкафы должны устанавливаться также для совместного размещения счетчиков и трансформаторов тока при выпол нении уч ета на стороне низшего напряжения (на вводе у потребителей).

1.5.31 . Конструкции и размеры шкафов , ниш, щитков и т.п. долж ны обеспеч ивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1 ° . Конструкция его крепления должна обеспечивать возмож ность установки и съема счетчика с лицевой стороны.

1.5.32 . Электропроводки к счетчикам должны отвечать требованиям, приведенным в гл. 2.1 и 3.4 .

1.5.33 . В электропроводке к расчетным счетчикам наличие паек не допускается.

1.5.34 . Сечения проводов и кабелей, присоединяемых к счетчикам, должны приниматься в соответствии с 3.4.4 (см. также 1.5.19 ).

1.5.35 . При монтаже электропроводки для присоединения счетчиков непосредственного включения около счетчиков необходимо оставлять концы проводов длиной не менее 120 мм. Изоляция или оболочка нулевого провода на длине 100 мм перед счетчиком должна иметь отличительную окраску.

1.5.36 . Для безопас ной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключе ния счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напря жения должно предусматриваться со всех фаз, присоединяемых к счетчику.

Трансформаторы тока, используемые для присоединения счетчиков на напряжении до 380 В, должны устанавливаться после коммута ционных аппаратов по направлению потока мощности.

1.5.37 . Заземление (зануление) счетчиков и трансформаторов тока долж но выполняться в соответствии с требованиями гл. 1.7 . При этом заземляю щие и нулевые защитные проводники от счетчиков и трансформаторов тока напряжением до 1 кВ до ближайшей сборки зажимов долж ны быть медными.

1.5.38 . При наличии на объекте нескольких присоединений с отдельным учетом электроэнергии на панелях счетчиков должны быть надписи наименований присоединений.

ТЕХНИЧЕСКИЙ УЧЕТ

1.5.39 . На тепловых и атомных электростанциях с агрегатами (блоками), не о борудованными информационными или управляющими вычислительными машинами, следует устанавливать стационарные или применять инвентарные переносные счетчики технического учета в системе СН для возможности расчетов технико-э кономических показателей. При этом установка счетчиков активной электроэнергии должна производиться в цепях электродвигателей, питающихся от шин распр еделительного устройства основного напряжения (выше 1 кВ) собственных нужд, и в цепях всех трансформаторов, питающихся от этих шин.

1.5.40 . На электростанциях с поперечными связями (имеющих общий паропровод) должна предусматриваться на стороне генераторного напряжения превышающих трансформаторов техническая возможность установки (в условиях эксплуатации) счетчиков технического учета активной электроэнергии, используемых для контроля правильности работы расчетных генераторных счетчиков.

1.5.41 . Счетчики активной электроэнергии для технического учета следует устанавливать на подстанциях напряжением 3 5 кВ и выше энергосистем: на сторонах среднего и низшего напряжений силовых трансформаторов; на каждой отходящей линии электропередачи 6 кВ и выше, находящейся на балансе энергосистемы.

Счетчики реактивной эле ктроэнергии для технического учета следует устанавливать на сторонах среднего и низшего напряж ени и силовых трансформаторов подстанций 35 кВ и выше энергосистем.

Указанные требования к установке счетчиков электроэнергии подлежат реализации по мере обеспечения счетчиками.

1.5.42 . На предприятиях следует предусматривать техническую возможность установки (в условиях эксплуатации) стационарных или применения инвентарных переносных счетчиков для контроля за соблюдением лимитов расхода электроэнергии цехами, технологическ ими линиями, отдельными энергоемкими агрегатами, для определения расхода электроэнергии на единицу продукции или полуфабр иката.

Допускается устано вка счетчиков т ехнического учета на вводе предприятия, если расчетный учет с этим предприятием в ед ется по счетчикам, установленным на подстанциях или электростанциях энергосистем.

На установку и с няти е счетчиков техн ич еского учета на предприятиях разрешения энергоснабжающей организации не требуется.

1.5.43 . Приборы технического учета на предприятия х (счетчики и и змерительные трансформаторы) должны находиться в ведении самих потребителей и должны удовлет ворять треб ованиям 1.5.13 (за исключением требования о наличии пломбы энергоснабжающей организации), 1.5.14 и 1.5.15 .

1.5.44 . Классы точност и счетчиков те хнического учета активной электроэнергии должны соответствовать значениям приведенным ниже:

Для линий электропередачи с двусторонним питанием напряжением

220 кВ и выше, трансформаторов мощностью 63 МВ · А

и более ................................................................................................... 1,0

Для прочих объектов учета .................................................................. 2,0

Классы точности счетчиков технического учета реактивной электроэнергии допускается выбирать на одну ступень ниже соответству ющего класса точности счетчиков технического учета активной электроэнерги и.

Г ЛА ВА 1.6
ИЗМЕ РЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

ОБЛАСТЬ ПРИМЕНЕНИЯ

1.6.1 . Настоящая глава Правил распространяется на измерения электрических величин, осуществляемые при помощи стационарных средств (показывающих, регистрирующих, фиксирующих и др.).

Правила не распространяются на лабораторные измерения и на измерения, осуществляемые с помощью переносных приборов.

Измерения неэлектрических величин, а также измерения других электрических величин, не регламентированных Правилами, требуемые в связи с особенностями технологического процесса или ос новного оборудования, выполняются на основании соответствующих норматив ных документов.

ОБЩИЕ ТРЕБОВАНИЯ

1.6.2 . Средства измерений электрических величин должны удовлетворять следующим основным требованиям:

1 ) класс точности измерительных приборов должен быть не хуже 2,5;

2 ) классы точност и измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не хуже приведенных в табл. 1.6.1 ;

Таблица 1.6.1. Классы точ ност и средств измерений

Класс точности прибора

Класс точности шунта, доба вочно го ре зистора

Класс точности изм ер ит ельного преобразователя

Класс точности изм ерит ельного трансформатор а

1,0

0,5

0,5

0,5

1,5

0,5

0,5*

0,5*

2,5

0,5

1,0

1,0 **

_____________

* Допус кается 1,0.

** Допуск ае тся 3,0.

3 ) пределы и змерения приборов должны выбираться с учетом возможных наибольших длитель ных отклонений измеряемых величин от номинальных значений.

1.6.3 . Установка измерительных приборов должна, как правило, производиться в пунктах, откуда осуществляется управление.

На подстанциях и гидроэлектростанциях без постоянного дежурства оперативного персонала допускается не устанавливать стационарные показывающие приборы, при этом должны быть предусмотрены места для присоединения переносных приборов специально обученным персоналом.

1.6.4 . Измерения на линиях электропер едачи 330 кВ и выше, а также на генераторах и тра нсформаторах должны производиться непрерывно.

На генераторах и трансформаторах гидроэлектростанций допускается производить измерения периодически с помощью средств централизован ного контроля.

Допускается производить измерения «по вызову» на общий для нескольких присоединений (за исключением указанных в первом абзаце) комплект показывающих приборов, а также применять другие средства централизованного контроля.

1.6.5 . При установке регистрирующих приборов в оперативном контуре пункта управления допускается не устанавливать показывающие приборы для непрерывного измерения те х же величин.

ИЗМЕРЕНИЕ ТОКА

1.6.6 . Измерение тока должно производиться в цепях всех напряжений, где оно необходимо для систематического контроля технологического процесса или оборудования.

1 .6.7 . Измерение постоянного тока должно производиться в цепях:

1 ) генераторов постоянного тока и силовых преобразователей;

2 ) аккумуляторных батарей , зарядных, подзарядных и разрядных устройств ;

3 ) возбуждения синхронных генераторов, компенсаторов, а также электродвигателей с регулируемым возбуждением.

Амперметры постоянного тока должны иметь двусторонние шкалы, если возможно изменение направления тока.

1.6.8 . В цепях переменного трехфа зного тока следует, как правило, измерять ток одной фазы.

И змер ение тока каждой фазы должно производиться:

1 ) для синхронных турбогенераторов мощностью 12 МВт и более;

2 ) для линий электропередачи с пофазным управлением, линий с продольной компе нсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме, в обоснованных случаях может быть предусмотрено измерение тока каждой фазы линий электропередачи 330 кВ и выше с трехфазным управлением;

3 ) для дуговых электропечей.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ

1.6.9 . Измерение напряжения, как правило, должно прои зводиться:

1 ) на секциях сборных шин постоянного и переме нного тока, которые могут работать раздельно.

Допускается установка одного прибора с переключением на несколько точек измерения.

На подстанциях допускается измерять напряжение только на стороне низшего напряжения, если установка трансформаторов напряжения на стороне высшего напряжения не требуется для других ц елей;

2 ) в цепях генераторов постоянного и переменного тока, синхронных компенсаторов, а также в отдельных случаях в цепях агрегатов специального назначения.

При автоматизированном пуске генераторов или других агрегатов установка на них приборов для непрерывного измер ения напряжения не обязательна;

3 ) в цепях возбуждения синхронных машин мощностью 1 МВт и более. В цепях возбуждения гидрогенераторов измерение не обязательно;

4 ) в цепях силовых преобразователей, аккумуляторных батарей, зарядных и подзарядных устройств;

5 ) в цепях дугогасящих реакторов.

1.6.10 . В трехфазных сетях производится измерение, как правило, одного междуфазного напряжения. В сетях напряжением выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжением одним прибором (с переключением).

1.6.11 . Должна производиться регистрация значений одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) электростанций и подстанций, по напряжению на которых ведется режим энергосистемы.

КОНТРОЛЬ ИЗОЛЯЦИИ

1.6.12 . В сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, в сетях переменного тока до 1 кВ с изолированной нейтралью и в сетях постоян ного тока с и золиро ванными полюсами или с и золированной средней точ кой, как правило, должен выполняться автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции одной из фаз (или полюса) ниже заданного значения, с последующим контролем асимметрии напряжения при помощи показывающего прибора (с переключением).

Допускается осуществлять контроль изоляци и путем периодических измерений напряжений с целью визуального контроля асимметрии напряжения.

ИЗМЕРЕНИЕ МОЩНОСТИ

1.6.13 . Измерение мощности должно производиться в цепях:

1 ) генераторов - активной и реактивной мощности.

При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0.

На электростанциях мощностью 200 МВт и более должна также измеряться суммарная актив ная мощность.

Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления ;

2 ) конденсаторных батарей мощностью 25 Мвар и более и синхронных компенсаторов - реактивной мощности;

3 ) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, - активной мощности ;

4 ) повышающих двухобмоточных трансформаторов электростанци й - активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего на пряжений.

Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора;

5 ) понижающих трансформаторов 220 кВ и выше - активной и реактивной, напряжением 110 - 150 кВ - активной мощности.

В цепях понижающих двухобмоточных тран сформаторов измере ние мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов - со стороны среднего и низшего напряжений.

На подстанциях 110 - 220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоедин ения контрольных показывающих или регистрирующих приборов;

6 ) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей - активной и р еактивной мощности;

7 ) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и ре активной мощности , должна предусматриваться возможность присоединения контрольны х пер еносных приборов.

1.6.14 . При установке щитовых показывающих приборов в цепях, в которых направле ние мощ ности может изменяться, эти приборы должны иметь двустороннюю шка лу.

1.6. 1 5 . Должна производиться регистр ация:

1 ) активной мощности турбогенераторов (мощностью 60 МВт и более);

2 ) сум марной мощност и электростанций (мощностью 200 МВт и более).

ИЗМЕРЕНИЕ ЧАСТОТЫ

1.6.16 . Измерение частоты должно производиться:

1 ) на каждой секции шин генераторного напряжения;

2 ) н а каждом генераторе блочной тепловой или атомной электростанции ;

3 ) на каждой системе (секции) шин высшего напряжения электростанции ;

4 ) в узлах возможного деления энергосистемы на несинхронно работающие части.

1.6.17 . Регистрация частоты или ее отклонения от заданного значения должна производиться:

1 ) на электростанциях мощностью 200 МВт и более;

2 ) на электростанциях мощностью 6 МВт и более, работающих изолированно.

1.6.18 . Абсолютная погрешность регистрирующих частотомеров на электростанциях, участвующих в регулировании мощности, должна быть не более ± 0,1 Гц.

ИЗМЕРЕНИЯ ПРИ СИНХРОНИЗАЦИИ

1.6.19 . Для измерений при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы: два вольтметра (или двойной вольтметр); два частотомера (или двойной частотомер); синхроноскоп.

РЕГИСТРАЦИ Я ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН В АВАРИЙНЫХ РЕЖИМАХ

1.6.20 . Для автоматической регистрации аварийных процессов в электрической части энергосистемы должны предусматриваться автоматические осциллографы.

Расста новку автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров, как правило, следует производить в соответствии с рекомендациями, приведенными в табл. 1.6.2 и 1.6.3.

Таблица 1.6.2. Рекомендации по расстановке автом ат ическ их аварийных осциллографов на объектах энергосистем

Напряже н ие распределительного устройс тва, кВ

Схема распределительного устройства

Коли чество линий, подключенных к секции (системе шин) распределительного устройства

Количество уст ан авл иваемы х осциллографов

750

Любая

Любое

Один для каждой линии (предпочтительно с записью предаварийного режима)

500

 »

Одна или две

Один для каждой линии (без записи предаварийного режима)

500

 »

Три или более

Один для каждой линии (предпочтительно хотя бы на одной из линий с записью предаварийного режима)

330

 »

Одна

Не устанавливается

330

 »

Две или более

Один для каждой линии (без записи предаварийного режима)

220

С секциями или системами шин

Одна или две на каждую секцию или рабочую систему шин

Один для двух секций или рабочих систем шин (без записи предаварийного режима)

220

То же

Три или четыре на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин (без записи предаварийного режима)

220

 » »

Пять или более на каждую секцию или рабочую систему шин

Один-два для каждой секции или рабочей системы шин с одним пусковым устройством (без записи предаварийного режима)

220

Полуторная или многоугольник

Три или более

Один для трех-четырех линий или для каждой системы шин (без записи предаварийного режима)

220

Без выключателей 220 кВ или с одним выключателем

Одна или две

Не устанавливается

220

Треугольник, четырехугольник, мостик

То же

Допускается установка одного автоматического осциллографа, если на противоположных концах линий 220 кВ нет автоматических осциллографов

110

С секциями или системами шин

Одна - три на каждую секцию или систему шин

Один для двух секций или рабочих систем шин (без записи предаварийного режима)

110

С секциями или системами шин

Четыре - шесть на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин (без записи предаварийного режима)

110

С секциями или системами шин

Семь или более на каждую секцию или рабочую систему шин

Один для каждой секции или рабочей системы шин Допускается установка двух автоматических осциллографов для каждой секции или рабочей системы шин (без записи предаварийного режима)

110

Без выключателей на стороне 110 кВ, мостик, треугольник, четырехугольник

Одна или две

Не устанавливается

Таблица 1.6.3. Рекоменд ации по выбору эл ектрическ их пар аметро в, регистрируемых автом ат ическим и аварий ными осц иллографами

Напр я жение р аспред елительного устройства, кВ

Параметры, рекомендуемые для рег истрации автоматическими осциллографами

750, 500, 330

Фазные напряжения трех фаз лин ий. Напряжение и ток нулевой последовательности ли ний. Ток и двух или трех фаз линий. Ток усилителя мощности, ток приема высокочастотного приемопередатчика и положение контактов выходного промежуточного реле высокочастотной защиты.

220, 110

Фазные напряжения и напряжение нулевой последовательности секции или рабочей системы шин. Токи нулевой последовательности линий, присоединенных к секции или рабочей системе шин. Фазные токи (двух или трех фаз) наиболее ответственных л иний. Токи приема высокочастотных приемопередатчиков дифференциально-фазных защит межсистемных линий электропередачи.

По согласованию с энергосистемами (районными энергетичес кими управлениями) могут предусматриваться регистрирующие приборы с ускоренной записью при аварии (для регистрации электрических па раметров, не контролируемых с помощью автоматических осциллографов ).

1.6.21 . На электрических станциях, принадлежащих потребителю и имеющих связь с энергосистемой (блок-станциях), автоматические аварийные осциллографы должны предусматриваться для каждой системы шин 110 кВ и выше, через которые осуществляется связь с энергосистемой по линиям электропередачи . Эти осциллографы, как правило, должны регистрировать напряжения (фазные и нулевой последовательности) соответствующей системы шин, токи (фазные и нулевой последовательности) лин ий электропередачи, связывающих блок-станцию с системой.

1.6.22 . Для регистрации действия устройств противоаварийной системной автоматики рекомендуется устанавливать дополнительные осциллографы. Расста новка дополнительных осциллографов и выбор регистрируемых ими параметров должны предусматриваться в про ектах противоаварийной системной автоматики.

1.6.23 . Для определения мест повреждений на ВЛ 110 кВ и выше длиной более 20 км должны предусматриваться фиксирующие приборы.

ГЛ АВА 1.7
ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.7.1 . Настоящая глава Правил распространяется на все электроустановки переменного и постоянного тока напряжением до 1 кВ и выше и содержит общие требования к их заземлению и защите людей от поражения электрическим током при повреждении изоляции.

Дополнительные требования приведены в соответствующих главах ПУЭ.

1.7.2 . Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю);

электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);

электроустановки до 1 кВ с глухозаземленной нейтралью;

электроустановки до 1 кВ с изолированной нейтралью.

1.7.3 . Электрической сетью с эффективно заземленной нейтралью называется трехфазная электрическая сеть выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4.

Коэффициентом замыкания на землю в трехфазной электрической сети называется отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.

1.7.4 . Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

1.7.5 . Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление.

1.7.6 . Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.

1.7.7 . Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.

1.7.8 . Рабочим заземлением на зывается заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.

1.7.9 . Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соеди нение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной ср едней точкой источника в сетях постоянного тока.

1.7.10 . Замыканием на землю называется случай но е соедин ение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредств енно с землей.

Замыканием на корпус называется случайное соеди нение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.

1.7.1 1 . Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.

1.7.12 . Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.

1.7.13 . Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления.

1 .7.14 . Естественным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производстве нного или иного на значения, используемые для целей заземления.

1.7.15 . Магистралью заземления или зануления называется соответственно заземляющий или нулевой защитный проводник с двумя или более ответвлениями.

1.7.1 6 . Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.

1.7.17 . защитным проводником (РЕ) в электроустановках напряжением до 1 кВ называется проводник, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.

1.7.18 . Нулевым рабочим проводником ( N ) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфа зного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в трехпроводных сетях постоянного тока.

Совмещенным нулевым защитным и нулевым рабочим проводником ( PEN ) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников.

В электроустановках до 1 кВ с глухозаземленной не йтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

1.7.19 . Зоной растекания называется область земли, в пределах которой во зникает заметный градиент потенциала при отекании тока с заземлителя.

1.7.20 . Зоной нулевого потенциала называется зона земли за пределами зоны растекания.

1.7.21 . Напряжением на заземляющем устройстве на зывается напряжение , возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземляющее устройство и зоной нулевого потенциала.

1.7.22 . Напряжением относительно земли при замыкании на корпус называется напряжение между этим корпусом и зоной нулевого потенциала.

1.7.23 . Напряж ением прикосновения называется напряжение между двумя точками цепи тока замыкания на землю (н а корпус) при одновременном прикосновении к ним человека.

1.7.24 . Напряжением шага называется напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека.

1.7.25 . Током замыкания на землю называется ток, стекающий в землю через место замыкания.

1.7.26 . Сопротивлением заземляющего устройства называется отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

1.7.27 . Экви валентным удельным сопротивлением земли с неоднородной структурой называется такое удельное сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Термин «удельное сопротивление», применяемый в настоящих Правилах, для з емли с неоднородной структурой следует понимать как «эквивалентное удельное сопротивление».

1.7.28 . Защитным отключением в электроустановках до 1 кВ называется автоматическое отключение всех фаз (полюсов) участка сети, обеспечивающее безопасные для человека сочетания тока и времени его прохождения при замыканиях на корпус или снижении уровня изоляции ниже определенного значения.

1.7.29 . Двойной изоляцией электроприемника называется совокупность рабочей и защитной (дополнительной) изоляции, при которой доступные прикосновению части электроприемника не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции.

1.7.30 . Малым напряжением называется номинальное напряжение не более 42 В между фазами и по отношению к земле, применяемое в электрических установках для обеспечения электробезопасности.

1.7.31 . Разделительным трансформатором называе тся трансформатор, предназначенный для отделения сети, питающей электроприемник, от первичной электрической сети, а также от сети заземления или зануления.

ОБЩИЕ ТРЕБОВАНИЯ

1.7.32 . Для защиты люде й от поражения электричес ким током при повреждении изоляции должна быть применена, по крайней мере, одна и з следующих защитных мер: заземление, зануление, защитное отключение, разделительный трансформатор, малое напряжение, двойная изоляция, выравнивание потенциалов.

1.7.33 . Заземление или зануление электроустановок следует выполнять:

1 ) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48 );

2 ) при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Заземление или зануление электроустановок не требуется при номинальных напряжениях до 42 В переменного тока и до 110 В постоянного тока во всех случаях, кроме указанных в 1.7.46, п. 6, и в гл. 7.3 и 7.6.

1.7.34 . Заземление или зануление электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

Сопрот ивление заземляющего устройства опоры ВЛ, на которой уста новлено электрооборудование, должно соответствовать требованиям:

1 ) 1.7.57 - 1.7.59 - в электроустановках выше 1 кВ сети с изолированной нейтралью;

2 ) 1.7. 62 - в электроустановках до 1 кВ с глухозаземленной ней тралью;

3 ) 1.7.65 - в электроустановках до 1 кВ с изолированной нейтралью;

4 ) 2.5.76 - в сетях 110 кВ и выше.

В трехфазных сетях до 1 кВ с глухозаземленной нейтралью и в однофазных сетях с заземленным выводом источника однофазного тока установленное на опоре ВЛ электрооборудование должно быть занулено (см. 1.7.63).

1.7.35 . Для заземления электроустановок в первую очередь должны быть использованы естественные заземлители. Если при этом сопротивление заземляющих устройств или напряжение при косновения имеет допустимые значения, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве, то искусственные заземлители должны применяться лишь при необходимости с нижения плотности токов, протекающих по естественным заземлителям или стекающих с них.

1.7.36 . Для заземления электроустановок различных назначе ний и различных напряжений, территориально приближенных одна к другой, рекомендуется применять одно обще е заземляющее устройство.

Для об ъединения заземляющих устройств различных электроустановок в одно общее заземляющее устройство следует использовать все имеющи еся в наличии естественные, в особенности протяженные, заземляющие проводники.

Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т.д.

1.7.37 . Требуемые настоящей главой сопротивления за земляющих устройств и напряжения прикосновения должны быть обеспечены при наиболее неблагоприятных условиях.

Удельное сопротивление земли следует определять , принимая в качестве расчетного значение , соответст вующее тому сезону года, когда сопротивление заземляющего устройства или напряжение прикосновения принимает наибольшие значения.

1.7.38 . Электроустановки до 1 кВ переменного тока могут быть с глухозаземленной или с изолированной нейтралью, электроустановки постоянного тока - с глухозаземленной или изол ированной средней точкой , а электроустановки с однофазными источниками тока - с одним глухозаземленным или с обоими изолированными выводами.

В четырехпроводных сетях трехфазного тока и трехпроводных сетях постоянного тока глухое заземление нейтрали или средней точки источников т ока является обязательным (см. также 1.7.105).

1.7.39 . В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным в ыводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Прим енение в таких электроустановках заз емления корпусов электроприемников без их зануления не допускается.

В обоснованных случаях рекомендуется выполнять защитное отключение (для пере носного ручного электроинструме нта, некоторых жилых и общественных помещений, насыщенных металлическими конструкциями, имеющими связь с землей).

1.7.4 0 . Электроустановки до 1 кВ переменного тока с изолированной нейтралью или изолирован ным выводом источника од нофазного тока, а также электроустановки постоянного тока с изолированной средней точкой следует применять при повышенных требованиях безопасности (для пере движных установок, торфяных разработок, шахт). Для таких электроустановок в качестве защитной меры должно быть выполнено заземление в сочетан ии с контролем изоляции сети или защитное отключение.

1.7.41 . В электроустановках выше 1 кВ с изолированной нейтралью должно быть выполнено заземление.

В таких электроустановках должна быть предусмотрена возможность быстрого отыскания замыка ний на землю (см. 1.6.12). Защита от замыканий на землю должна устанавливаться с действием на отключение (по всей электрически связанной с ети) в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т.п. ).

1.7.42 . Защитное отключение рекомендуется применять в качестве основной или дополнительной меры защиты, если безопасность не может быть обеспечена путем устройства заземления или зануления либо если устройство заземления или зануления вызывает трудности по условиям выполнения или по экономическим соображениям. Защитное отключение должно осуществляться устройствами (аппаратами), удовлетворяющими в отношении надежности действия специальным техническим условиям.

1 .7.43 . Трехфазная сеть до 1 кВ с изолированной нейтралью или однофазная сеть до 1 кВ с изолированным выводом, связанная через трансформатор с сетью выше 1 кВ, должна быть защищена пробивным предохранителем от опас ности, возни кающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низшего напряжения каждого трансформатора. При этом должен быть предусмотрен контроль за целостью пробивного предохранителя.

1.7.44 . В электроустановках до 1 кВ в местах, где в качестве защитной меры применяются разделительные или понижающие трансформаторы, вторичное напряжение трансформаторов должно быть : для разделительных трансформаторов - не более 380 В, для понижающих трансформаторов - не более 42 В.

При применении этих трансформаторов необходимо руководствоваться следующим:

1 ) разделительные трансформаторы должны удовлетворять специальным техническим условиям в отношении повышен ной надежности конструкции и повышенных испытательных напряжений;

2 ) от разделительного трансформатора ра зрешается питание только одного электроприемни ка с номинальным током плавкой вставки или расцепителя автоматического выключателя на первичной стороне не более 15 А;

3 ) заземление вторичной обмотки разделительного трансформатора не допускается. Корпус трансформатора в зависимости от режима нейтрали сети, питающей первичную обмотку, должен быть заземлен или занулен. Заземление корпуса электроприемника, присоединенного к такому трансформатору, не требуется;

4 ) понижающие трансформаторы со вторичным напряжением 42 В и ниже могут быть использованы в качестве ра зделительных, если они удовлетворяют требованиям, приведен ным в пп. 1 и 2 настоящего параграфа. Если понижающие трансформаторы не являются разделительными, то в зависимости от режима нейтрали сети, питающей первичную обмотку, следует заземлять или занулять корпус трансфор матора, а также один из выводов (одну из фаз) или нейтраль (среднюю точку) вторичной обмотки.

1.7.45 . При невозможности выполне ния за земления, зануления и защитного отключения, удовлетворяющих требованиям настоящей главы, или если это представляет значительные трудности по технологическим пр ичинам, доп ускается обслуживание электрооборудовани я с и зол ирующи х площадок.

Изолирующие площадки должны быть выполнены т ак, чтобы прикосновение к представляющим опасность незаземленным (незануленным) частям могло быть только с площадок. При этом должна быть исключена возможность одновременного прикосновения к электрооборудованию и час тям другого оборудования и частям здания.

ЧАСТИ, ПОДЛЕЖАЩИЕ ЗАНУЛЕНИЮ ИЛИ ЗАЗЕМЛЕНИЮ

1.7.46 . К частям, под леж ащим занулению или заземлению согласно 1.7.33 , относятся:

1 ) корпуса эле ктр ических машин , трансформаторов, аппара тов, светильников и т.п. (см. та кже 1.7.44 );

2 ) приводы электрических аппаратов;

3 ) вторичные обмотки измерительных трансформаторов (см. та кже 3.4.23 и 3.4.24 );

4 ) каркасы распредели тельных щитов, щитов управления, щитков и шкафов , а также съемные или открывающиеся части, если на последних установлено электрообор удование напряжением выше 42 В переменного тока или более 110 В постоянного тока;

5 ) металлические конструкц ии распределительных устройств, металлические кабельные конструкции, металлические кабельные соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, металлические рукава и трубы электропроводки, кожухи и опорные конструкции шинопроводов, лотки, короба, струны, тросы и стальные полосы , на которых укреплены кабели и провода (кроме струн, тросо в и полос, по которым проложены кабели с заземленной или зануленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование;

6 ) металлические оболочки и броня контрольных и силовых кабелей и проводов напряжением до 42 В переменного тока и до 110 В постоянного тока, проложенных на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п. Вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению;

7 ) металлические корпуса передвижных и переносных электроприемников ;

8 ) э лектрооборудование, размещенное на движущи хся частях станков, машин и механизмов.

1.7.47 . С целью уравнива ния потенциалов в тех помещениях и наружных установках, в которых применяются з аземление или зануление, строительные и производственные конструкции, стационарно проложенные трубопроводы всех назначений, мета лличес кие корпуса технологического оборудования, подкрановые и железнодорож ны е рельсовые пути и т.п. должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочл ене ниях являются достаточн ыми.

1.7.48 . Не требуется преднамерен но заземлять или занулять:

1 ) корпуса электрооборудования, аппаратов и электромонтажных конструкций, установленных на заземленных (зануленных) металлических конструкциях, распределительных устройствах, на щитах, шкафах, щитках, станинах станков, машин и механизмов, при условии обеспечения надеж ного электрического ко нтакта с зазем ленными или зануленными основаниями (исключение - см. гл. 7.3 );

2 ) конструкции, перечисленные в 1.7.46 , п. 5, при условии надежного электрического контакта между этими конструкциями и установл енными на них заземленным или зануленным электрооборудованием. При этом указанные конструкции не могут быть использованы для заземления или зануления установленного на них другого электрооборудования ;

3 ) арматуру изоляторов всех типов, оттяжек, кронштейнов и осветительной арматуры при установке их на деревянных опорах ВЛ или на деревянных конструкциях открытых подстанций, если это не требу ется по условиям защиты от атмосферных перенапряжений.

При прокладке кабеля с металлической заземленной оболочкой или неизолированного заземляющего проводника на деревянной опоре п еречисленные части, расположенные на этой опоре, должны быть заземлены или занулены;

4 ) съемные или открывающиеся части металлических каркасов камер распределительных устройств, шкафов, ограждений и т.п., если на съемных (открывающихся) частях не установлено электрооборудование или если напряжение установленного электрооборудования не превышает 42 В переменного тока или 110 В постоянного тока (исключ ение - см. гл. 7.3 );

5 ) корпуса электроприемников с двойной изоляцией;

6 ) металлические скобы, закрепы, отрезки труб механической защиты кабелей в местах их прохода через стены и перекрытия и другие подобные детали, в том числе протяжные и ответвительные коробки размером до 100 см2, электропроводок, выполняемых кабелями или изолированными проводами, прокладываемыми по стенам, перекрытиям и другим элементам строе ний.

ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ СЕТИ С ЭФФЕКТИВНО ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ

1.7.49 . Заземляющие устройства электроустановок выше 1 кВ сети с эфф ективно заземленной нейтралью следует выполнять с соблюдени ем требований либо к их сопротивлению (см. 1.7.51 ), либо к напряжению прикосновения (см. 1.7.52 ), а также с соблюде нием требований к конструктивному выполнению (см. 1.7.53 и 1.7.54 ) и к ограничению напряжения на заземляющем устройстве (см. 1.7.50 ). Требования 1.7.49 - 1.7.54 не распространяются на заземляющие устройства опор ВЛ.

1 .7.50 . Напряжение на заземляющем устройстве при стекании с него тока замыкания на землю не должно превышать 10 кВ. Напряжение выше 10 кВ допускается на заземляющих устройствах, с кот орых исключен вынос потенциалов за пределы здан ий и в нешних ограждений электроустановки. При напряжениях на за зе мляющем устр ойстве более 5 кВ и до 10 кВ должны быть предусмотрены меры по защите изоляции отх одящих кабелей связи и телемеханики и по предотвращению выноса опасных потенциалов за пределы электроустановки.

1.7.51 . Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом, включая сопротивление ес тественных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и соединять их между собой в заземляющую сетку.

Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5 - 0,7 м от поверхности земли и на расстоянии 0,8 - 1,0 м от фундаментов или осно ваний оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены одна к другой, а расстояние между фундаментами или основаниями двух рядов не превышает 3,0 м.

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5 - 0,7 м от поверхности земли. Расстояние между ними рекоме ндуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0 и 20,0 м. Размеры ячеек заземляющей сетки, примыкающих к местам присоединения нейтралей силовых трансформаторов и короткозамыкателей к за земляющему устройству, не должны превышать 6 ´ 6 м2.

Горизонтальные заземлители следует прокладывать по краю территории, занимаемой заземляющим устройством, так, чтобы они в совокупности образовывали замкнутый контур.

Если контур заземляющего устройства располагается в пре делах внешнего ограждения электроустановки, то у входов и въездов на ее территорию следует выравнивать потенциал путем установки двух вертикальных заземлителей у внешнего горизонтального заземлителя напротив входов и въездов. Вертикальные заземлители должны быть длиной 3 - 5 м, а расстояние между ними должно быть равно ширине входа или въезда.

1.7.52 . Заземляющее устройство, которое, выполняется с соблюдением треб ований, предъявляемых к напряжению прикосновения, должно обеспечивать в любое время года при стекании с него тока замыкания на землю значения напряжений прикосновения, не превышающие норм ированных. Сопротивление заземляющего устройства при этом определяется по допустимому напряжению на заземляющем устройстве и току замыкания на землю.

При определении значения допустимого напряжения прикоснов ения в качестве расчетного времени воздействия следует принимать сумму времени действия за щит ы и по лного времени о тк лючения выключателя. При этом определен ия допустимых зн ачений напряжений прикосновения у рабочих мест, где при прои зводстве оператив ных переключений могут во зникнуть КЗ на ко нструкции , доступ ные для прикосновения прои зводящему переключения персонал, следуе т принима ть время де йствия ре зервной защиты , а для остальной территории - основной защиты.

Размещение продольных и поперечных горизонтальных заземлителей должно определяться требованиями ограничения напряжений прикосновения до нормированных значений и удобством присоединения заземляемого оборудования. Расстояние между продольными и поперечными горизонтальными искусственными заземлителями не должны превыша ть 30 м, а глубина их заложения в грунт должна быть не менее 0,3 м. У рабочих мест допускае тся прокладка заземлителей на меньшей глубине , если необходимость этого подтверждается расчетом, а само выполнение не снижает удобства обслуживания электроустановки и срока службы заземлителей. Для снижения напряжения прикосновения у рабочих мест в обоснованных случаях может быть выполнена подсыпка щебня слоем толщиной 0,1 - 0,2 м.

1.7.53 . При выполнении заземляющего устройства с соблюдением требований, предъявляемых к его сопротивлению или к напряжению прикосновения, дополнительно к требованиям 1.7.51 и 1.7.52 следует:

заземляющие проводники, присоединяющие оборудование или конструкции к заземлителю, в земле прокладывать на глубине не менее 0,3 м ;

вблизи мест расположения заземляемых ней тралей силовых трансформаторов, короткозамыкателей прокладывать продольные и поперечные горизонтальные заземлители (в четырех направлениях).

При выходе заземляющего устройства за пределы ограждения электроустановки горизонтальные заземлители, находящиеся вне территории электроуста новки, следует прокладывать на глубине не менее 1 м. Внешний контур заземляющего устройства в этом случае рекомендуется выполнять в виде многоугольника с тупыми или скругленными углами.

1.7.54 . Внешнюю ограду электроустановок не рекомендуется присоединять к заземляющему устройству. Если от электроустановки отходят ВЛ 110 кВ и выше, то ограду следует заземлить с помощью вертикальных заземлителей длиной 2 - 3 м, установ ленных у стоек ограды по всему ее периметру через 20 - 50 м. Установка таких заземлителей не требуется для ограды с металличес кими стойками и с теми стойками из железобетона, арматура которых электрически соединена с металлическими звеньями ограды.

Для исключения электрической связи внешней ограды с заземляющим у стройством расстояние от ограды до элементов заземляющего устройства, расположенных вдоль нее с внутренней, с внешней или с обеих сторон , должно быть не менее 2 м. Выходящие за пределы ограды горизонтальные заземлители, трубы и кабели с металлической оболочкой и другие металлические комму никации должны быть проложены посередине между стойками ограды на глубине не менее 0,5 м. В местах примыкания внешней ограды к зданиям и сооружениям, а также в местах примыкания к внешней ограде внутренних металлических ограждений должны быть выполнены кирпичные или деревянные вставки длиной не менее 1 м.

Не следует устанавливать н а внешней ограде электроприемники до 1 кВ, которые питаются непосредственно от понизительных трансформ аторов, расположенных на территории электроустановки. При размещении электроприемников на внешней ограде их питание следует осуществлять чере з разделительные трансформаторы. Эти тра нсформаторы не допускается устанавливать на ограде. Линия, соединяющая вторичную обмотку разделительного трансформатора с электроприемником, расположенным на ограде, должна быть изолирована от земли на расчетное значение напряжения на заземляющем устройстве.

Если выполнение хотя бы одного из указанных мероприятий невозможно, то металлические части ограды следует присоединить к заземляющему устройству и выполнить выравнивание потенциалов так, чтобы напряжение прикосновения с внешней и внутренней сторон ограды не превышало допустимых значений. При выполнении заземляющего устройства по допустимому сопротивлению с этой целью должен быть проложен с внешней стороны ограды на расстоянии 1 м от нее и на глубине 1 м горизонтальный заземлитель. Этот заземлитель следует присоединять к заземляющему устройству не менее чем в четырех точках.

1.7.55 . Если заземляющее устройстве промышленной или другой эле ктроустановки соединено с заземлителем электроустановки выше 1 кВ с эффективно заземленной нейтралью кабелем с металлической оболочкой или броней или посредством других металлических связей, то для выравнивания потенциалов вокруг такой электроустановки или вокруг здания, в котором она размещена, необходимо соблюдение одного из следующих условий:

1 ) укладка в землю на глубине 1 м и на расстоянии 1 м от фундамента здания или от периметра территории, занимаемой оборудованием, заземлителя, соединенного с металлическими конструкциями строительного и производственного назначения и сетью заземления (зануления), а у входов и у въездов в здание - укладка проводников на расстоянии 1 и 2 м от заземлителя на глубине 1 и 1,5 м соответственно и соединение этих проводников с заземлителем;

2 ) использование железобетонных фундаментов в качестве заземлителей в соответствии с 1.7.35 и 1.7.70 , если при этом обеспечивается допустимый уровень выравнивания потенциалов. Обеспечение условий выравнивания потенциалов с помощью железобетонных фундаментов, используемых в качестве заземлителей, определяется на основе требований специальных директивных документов.

Не требуется выполнение условий, указанных в пп. 1 и 2, если вокруг зданий имеются асфальтовые отмостки, в том числе у входов и въездов. Если у какого-либо входа (въезда) отмостка отсутствует, у этого входа (въезда) должно быть выполнено выравнивание потенциалов путем укладки двух проводников, как указано в п. 1, или соблюдено условие по п. 2. При этом во всех случаях должны выполняться тр ебования 1.7.56.

1.7.56 . Во избежание выноса поте нциала не допускается питание электропроводников, находящи хся за пределами заземляющих устройств электроустановок выше 1 кВ сети с эффект ив но за земленной нейтралью, от обмоток до 1 кВ с заземленной нейтралью трансформаторов, находящихся в пределах контура заземляющего устройств а. При необходимости питание таких электроприемников может ос уществляться от трансформатора с изолиров анной нейтралью на стороне до 1 кВ по кабельной линии, выполненной кабелем бе з мет аллической оболочки и без брони, или по ВЛ. Питание так их электроприемников может осуществляться также через разделительный трансформатор. Разделительный трансформатор и линия от его вторичной обмотки к электроприемнику, если она проходит по территории, занимаемой заземляющим устройством электроустановки, должны иметь изоляцию от земли на расчетное значение напряжения на заземляющем устройстве. При невозможности выполнения указанных услов ий на территории, занимаемой такими электроприемниками, должно быть выполнено выравнивание потенциалов.

ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

1.7.57 . В электроустановках выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства R , Ом, при прохожд ении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть не более:

при использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ

 но не более 10 Ом,

где I - расчетный ток замыкания на землю, А.

При этом должны также выполняться требования, предъявляемые к заземлению (занулению) электроустановок до 1 кВ;

при использовании заземляющего устройства только для электроуст ановок выше 1 кВ

 но не более 10 Ом.

1.7.58 . В качестве расчетного тока принимается:

1 ) в сетях без компенсации емкостных токов - полный ток замыкания на землю;

2 ) в сетях с компенсацией емкостных токов для заземляющих устройств, к которым присоединены компенс ирующие аппараты, - ток, равный 125 % номинального т ока этих аппарато в;

для заземляющих устройств, к которым не присоединены компенсирующие аппараты, - остаточный ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компе нсирующих аппаратов или наиболее разветвленного участка сети.

В качестве расчетного тока может быть принят ток плавления предохранителей или то к срабатывания релейной защиты от однофазных замык аний на землю или междуфазных з амыканий, если в последнем случае защита обеспечивает отключение замыканий на з емлю. При этом ток замыкания на землю должен быть не менее полуторакратного тока срабатывания релейной защиты или трехкратного номинального тока предохранителей.

Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольше е значение.

1.7.59 . В открытых электроустановках выше 1 кВ сетей с изолированной нейтралью вокруг площади, занимаемой оборудованием, на глубине не менее 0,5 м должен быть проложен замкнутый горизонтальный заземлитель (контур), к которому подсоединяется заземляемое оборудование. Если сопротивление заземляющего устройства выше 10 Ом (в соответствии с 1.7.69 для зем ли с удельным сопротивлением более 500 Ом · м), то следует дополнительно проложить горизонтальные заземлители вдоль рядов оборудования со стороны обслуживания на глубине 0,5 м и на расстоянии 0,8 - 1,0 м от фундаментов или оснований оборудования.

ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ДО 1 кВ С ГЛУХОЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ

1.7.60 . Нейтраль генератора, трансформатора на стороне до 1 кВ должна быть присоединена к заземлителю при помощи заземляющего проводника. Сечение заземляющего проводника должно быть не менее указанного в табл. 1.7.1 .

Использование нулевого рабочего проводника, идущего от нейтрали генератора или трансформатора на щит распределительного устройства, в качестве заземляющего проводника не допускается.

Указанный заземлитель должен быть расположен в непосредственной близости от генератора или трансформатора. В отдельных случаях, например, во внутрицеховых подстанциях заземлитель допускается сооружать непосредственно около стены здания.

1.7.61 . Вывод нулевого рабочего проводника от нейтрали генератора или трансформатора на щит распределительного устройства должен быть выполнен при выводе фаз шинами - шиной на изоляторах, при выводе фаз кабелем (проводом) - жилой кабеля (провода). В кабелях с алюминиевой оболочкой допускается использовать оболочку в качестве нулевого рабочего проводника вместо четвертой жилы.

Проводимость нулевого рабочего проводника, идущего от нейтрали генератора или трансформатора, должна быть не менее 50 % проводимости вывода фаз.

1.7.62 . Сопротивление заземляющего устройства, к которому присоединены нейтрали ге нераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2,4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естеств енных заземлител ей, а также заземлите лей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или тр ансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного ток а или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении r земли более 100 Ом · м допускается увеличивать ук азанные выше нормы в 0,01 r раз, но не более десятикратного.

1.7.63 . На ВЛ зануление должно быть осуществлено нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода.

На концах ВЛ (или отве твлений от них) длиной более 200 м, а также на вводах от ВЛ к электроустановкам , которые подлежат занулению, должны быть выполнены повторные заземления нулевого рабочего провода. При этом в первую очередь следует использовать естественные заземлители, например подзем ные части опор (см. 1.7.70), а также заземляющие устройства, выполненные для защиты от грозовых перенапряжений (см. 2.4.26).

Указанные повторные заземления выполняются, если более частые заземления не требуются по условиям защиты от грозовых перенапряжений.

Повторные заземления нулевого провода в сетях постоянного тока должны быть осуществлены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами. Заземляющие устройства на ВЛ постоянного тока, выполненные для защиты от грозовых перенапряжений (см. 2.4.26), рекомендуется использовать для повторного заземления нулевого рабочего провода.

Заземляющие проводники для повторных заземлений нулевого провода должны быть выбраны из условия длительного прохождения тока не менее 25 А. По механической прочности эти проводники должны иметь размеры не менее приведенных в табл. 1.7.1.

1.7.64 . Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений нулевого рабочего провода каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжения х 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли r более 100 Ом · м допускается увеличивать указанные нормы в 0,01 r раз, но не более десятикратного.

ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ до 1 кВ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

1.7.65 . Сопротивление заземляющего устройства, используемого для заземления электрооборудования, должно быть не более 4 Ом.

При мощности генераторов и трансформаторов 100 кВ А и менее заземляющие устройства могут иметь сопротивление не более 10 Ом. Если генераторы или трансформаторы работают параллельно, то сопротивл ение 10 Ом допускается при суммарной их мощности не более 100 кВ · А.

ЭЛЕКТРОУСТАНОВКИ В РАЙОНАХ С БОЛЬШИМ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ ЗЕМЛИ

1.7.66 . Заземляющие устройства электроустановок напряжением выше 1 кВ с эфф ективно заземленной нейтралью в районах с большим у дельным сопротивлением земли, в том числе в районах многолетней мерзлоты, рекомендуется выполнять с соблюдением тр ебований, предъявляемых к напряжению прикоснов ения (см. 1.7.52 ).

В скальных структурах допускается прокладывать горизонтальные заземлители на меньшей глубине, чем этого требуют 1.7.52- 1.7.54, но не менее чем 0, 15 м. Кроме того, допускается не выпол нять требуемых 1.7.51 вертикальных заземлителей у входов и въездов.

1.7.67 . При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуются следующие мероприятия:

1 ) устройство вертикальных заземлителей увеличе нной длины, если с глубиной удельное сопротивление земли снижается, а естественные углубленные заземлители (например, скважины с металлическими обсадными трубами) отсутствуют;

2 ) устройство выносных заземлителей, если вблизи (до 2 км) от электроустановки есть места с меньшим удельным сопротивлением земли;

3 ) укладка в траншеи вокруг горизонтальных заземлител ей в скальных структурах влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншеи;

4 ) применение искусственной обработки грунта с целью снижения его удельного сопроти вления, если другие способы не могут быть применены или не дают необходимого эффекта.

1.7.68 . В районах многолетней мерзлоты кроме рекомендаций, приведе нных в 1.7.67 , следует.

1 ) помещать заземлители в непромерзающие водоемы и талые зоны;

2 ) использовать обсадные трубы скважин;

3 ) в дополнение к углубленным заземлителям применять протяженные заземлители на глубине около 0,5 м, предназначенные для работы в летнее время при оттаивании поверхностного слоя земли;

4 ) создавать искусственные талые зоны путем покрытия грунта над заземлителем слоем торфа или другого теплоизоляционного материала на зимний период и раскрытия их на летний период.

1.7.69 . В электроустановках выше 1 кВ, а также в электроустановках до 1 кВ с изолированной нейтралью для земли с удельным сопротивлением более 500 Ом · м, если мероприятия, предусмотренные 1.7.66 - 1.7.68 , не позволяют получить приемлемые по экономическим соображениям заземлители, допускается повысить требуемые настоящей главой значения сопротивлений заземляющих устройств в 0,002 r раз, где r - эквивалентное удельное сопротивление земли, Ом · м. При этом увеличение требуемых настоящей главой сопротивлений заземляющих устройств должно быть не более десятикратного.

ЗАЗЕМЛИТЕЛИ

1.7.70 . В качестве естественных заземлителей рекомендуется использовать:

1 ) проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей;

2 ) обсадные трубы скважин;

3 ) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

4 ) металлические шунты гидротехнических сооружений, водоводы, затворы и т.п.;

5 ) свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей.

Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих устройств они должны учитываться при количестве кабелей не менее двух;

6 ) заземлители опор ВЛ, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ;

7 ) нулевые провода ВЛ до 1 кВ с повторными заземлителями при количестве ВЛ не менее двух;

8 ) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами.

1.7.71 . Заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры ВЛ, повторное заземление нулевого провода и металлические оболочки кабелей.

1.7.72 . Для искусственных заземлителей следует применять сталь.

Искусственные заземлители не должны иметь окраски.

Наименьшие размеры стальных искусственных заземлителей приведены ниже:

Диаметр круглых (прутковых) заземлителей, мм:

неоцинкованных ............................................................... 10

оцинкованных .................................................................... 6

Сечение прямоугольных заземлителей, мм2 ................... 48

Толщина прямоугольных заземлителей, мм ................... 4

Толщина полок угловой стали, мм .................................. 4

Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ выбирается по термической стойкости (исходя из допустимой температуры нагрева 400 С ° ).

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п. Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

В случае опасности коррозии заземлителей должно выполняться одно из следующих мероприятий:

увеличение сечения заземлителей с учетом расчетного срока их службы;

применение оцинкованных заземлителей;

применение электрической защиты.

В качестве искусственных заземлителей допускается применение заземлителей из электропроводящего бетона.

ЗАЗЕМЛЯЮЩИЕ И НУЛЕВЫЕ ЗАЩИТНЫЕ ПРОВОДНИКИ

1.7.73 . В качестве нулевых защитных проводников должны быть в первую очередь использованы нулевые рабочие проводники (см. также 1.7.82 ).

В качестве заземляющих и нулевых защитных проводников могут быть использованы (исключения см. в гл. 7.3):

1 ) специально предусмотренные для этой цели проводники;

2 ) металлические конструкции зданий (фермы, колонны и т.п.);

3 ) арматура железобетонных строительных конструкций и фундаментов;

4 ) металлические конструкции производственного назначения (подкрановые пути, каркасы распределительных устройств, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.);

5 ) стальные трубы электропроводок;

6 ) алюминиевые оболочки кабелей;

7 ) металлические кожухи и опорные конструкции шинопроводов, металлические короба и лотки электроустановок;

8 ) металлические стационарные открыто проложенные трубопроводы всех назначений, кроме трубопроводов горючих и взрывоопасных веществ и смесей, канализации и центрального отопления.

Приведенные в пп. 2 - 8 проводники, конструкции и другие элементы могут служить единственными заземляющими или нулевыми защитными проводниками, если они по проводимости удовлетворяют требованиям настоящей главы и если обеспечена непрерывность электрической цепи на всем протяжении использования.

Заземляющие и нулевые защитные проводники должны быть защищены от коррозии.

1.7.74 . Использование металлических оболочек трубчатых проводов, несущих тросов при тросовой электропроводке, металлических оболочек изоляционных трубок, металлорукавов, а также брони и свинцовых оболочек проводов и кабелей в качестве заземляющих или нулевых защитных проводников запрещается. Использование для указанных целей свинцовых оболочек кабелей допускается лишь в реконструируемых городских электрических сетях 220/127 и 380/220 В.

В помещениях и в наружных установках, в которых требуется применение заземления или зануления, эти элементы должны быть заземлены или занулены и иметь надежные соединения на всем протяжении. Металлические соединительные муфты и коробки должны быть присоединены к броне и к металлическим оболочкам пайкой или болтовыми соединениями.

1.7.75 . Магистрали заземления или зануления и ответвления от них в закрытых помещениях и в наружных установках должны быть доступны для осмотра и иметь сечения не менее приведенных в 1.7.76 - 1.7.79 .

Требование о доступности для осмотра не распространяется на нулевые жилы и оболочки кабелей, на арматуру железобетонных конструкций, а также на заземляющие и нулевые защитные проводники, проложенные в трубах и в коробах, а также непосредственно в теле строительных конструкций (замоноличенные).

Ответвления от магистралей к электроприемникам до 1 кВ допускается прокладывать скрыто непосредственно в стене, под чистым полем и т.п. с защитой их от воздействия агрессивных сред. Такие ответвления не должны иметь соединений.

В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п.

Использование неизолированных алюминиевых проводников для прокладки в земле в качестве заземляющих или нулевых защитных проводников не допускается.

1.7.76 . Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104 ).

Сечения (диаметры) нулевых защитных и нулевых рабочих проводников ВЛ должны выбираться в соответствии с требованиями гл. 2.4.

1.7.77 . В электроустановках выше 1 кВ с эффективно заземленной нейтралью сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока однофазного КЗ температура заземляющих проводников не превысила 400 °С (кратковременный нагрев, соответствующий времени действия основной защиты и полного времени отключения выключателя).

Таблица 1.7.1. Наименьшие размеры заземляющих и нулевых защитных проводников

Наименование

Медь

Алюминий

Сталь

в зданиях

в наружных установках

в земле

Неизолированные проводники:

сечение, мм2

4

6

-

-

-

диаметр, мм

-

-

5

6

10

Изолированные провода: сечение, мм2

1,5*

2,5

-

-

-

Заземляющие и нулевые жилы кабелей и многожильных проводов в общей защитной оболочке с фазными жилами: сечение, мм2

1

2,5

-

-

-

Угловая сталь: толщина полки, мм

-

-

2

2,5

4

Полосовая сталь:

сечение, мм2

-

-

24

48

48

толщина, мм

-

-

3

4

4

Водогазопроводные трубы (стальные): толщина стенки, мм

-

-

2,5

2,5

3,5

Тонкостенные трубы (стальные): толщина стенки, мм

-

-

1,5

2,5

Не допускается

_____________

* При прокладке проводов в трубах сечение нулевых защитных проводников допускается применять равным 1 мм2, если фазные проводники имеют то же сечение.

1.7.78 . В электроустановках до 1 кВ и выше с изолированной нейтралью проводимость заземляющих проводников должна составлять не менее 1/3 проводимости фазных проводников, а сечение - не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104 ). Не требуется применения медных проводников сечением более 25 мм2, алюминиевых - 35 мм2, стальных - 120 мм2. В производственных помещениях с такими электрическими магистралями заземления из стальной полосы должны иметь сечение не менее 100 мм2. Допускается применение круглой стали того же сечения.

1.7.79 . В электроустановках до 1 кВ с глухозаземленной нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:

в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;

в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, ум ноженной на коэффициент , учитывающий разброс (по заводским данным), и на коэффициент запаса 1,1. При отсутствии заводских данных для автоматических выключателей с номинальным током до 100 А кратность тока КЗ относительно уставки следует принимать не менее 1,4, а для автоматических выключателей с номинальным током более 100 А - не менее 1,25.

Полная проводимость нулевого защитного проводника во всех случаях должна быть не менее 50 % проводимости фазного проводника.

Если требования настоящего параграфа не удовлетворяются в отношении значения тока замыкания на корпус или на нулевой защитный проводник, то отключение при этих замыканиях должно обеспечиваться при помо щи специальных защит.

1.7.80 . В электроустановках до 1 кВ с глухозаземленной нейтралью в целях удовлетворения требований, приведенных в 1.7.79 , нулевые защитные проводники рекомендуется прокладывать совместно или в непосредственной близости с фазными.

1.7.81 . Нулевые рабочие проводники должны быть рассчитаны на длительное протекание рабочего тока.

Рекомендуется в качестве нулевых рабочих проводников применять проводники с изоляцией, равноценной изоляции фазных проводников. Такая изоляция обязательна как для нулевых рабочих, так и для нулевых защитных проводников в тех местах, где применение неизолированных проводников может привести к образованию электрических пар или к повреждению изоляции фазных проводников в результате искрения между неизолированным нулевым проводником и оболочкой или конструкцией (например, при прокладке проводов в трубах, коробах, лотках). Такая изоляция не требуется, если в качестве нулевых рабочих и нулевых защитных проводников применяются кожухи и опорные конструкции комплектных шинопроводов и шины компле ктных распределительных устройств (щитов, распределительных пунктов, сборок и т.п.), а также алюминиевые или свинцовые оболочки кабелей (см. 1.7.74 и 2.3.52).

В производственных поме щениях с нормальной средой допускается использовать в качестве нулевых рабочих проводников указанные в 1.7.73 металлические конструкции, трубы, кожухи и опорные конструкции шинопроводов для питания одиночных однофазных электроприемников малой мощности, например: в сетях до 42 В; при включении на фазное напряжение одиночных катушек магнитных пускателей или контакторов; при включении на фазное напряжение электрического освещения и цепей управления и сигнализации на кранах.

1.7.82 . Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного и постоянного тока. Для зануления таких эле ктроприемников должен быть применен отдельный третий проводник, присоединяемый во втычном соединителе ответвительной коробки, в щите, щитке, сборке и т.п. к нулевому рабочему или нулевому защитному проводнику (см. также 6.1.20 ).

1.7.83 . В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.

В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением (см. также 1.7.84).

Однополюсные выключатели следует устанавливать в фазных проводниках, а не в нулевом рабочем проводнике.

1.7.84 . Нулевые защитные проводники линий не допускается использовать для зануления электрооборудования, питающегося по другим ли ниям.

Допускается использовать нулевые рабочие проводники осветительных линий для зануления электрооборудования, питающегося по другим линиям, если все указанные линии питаются от одного транс форматора, проводимость их удовлетворяет требованиям настоящей главы и исключена возможность отсоединения нулевых рабочих проводников во время работы других линий. В таких случаях не должны применяться выключатели, отключающие нулевые рабочие проводники вместе с фазными.

1.7.85 . В помещениях сухих, без агрессивной среды, заземляю щие и нулевые защитные проводни ки допускается прокладывать непосредственно по стенам.

Во влажных, сырых и особо сырых помещениях и в помещениях с агрессивной средой заземляющие и нулевые защитные проводники следует прокладывать на расстоянии от стен не менее чем 10 мм.

1.7.86 . Заземляющие и нулевые защитные проводники должны быть предохранены от химических воздействий. В местах перекрещивания этих проводников с кабелями, трубопроводами, железнодорожными путями, в местах их ввода в здания и в других местах, где возможны механические повреждения заземляющих и нулевых защитных проводников, эти проводники должны быть защищены.

1.7.87 . Прокладка заземляющих и нулевых защитных проводников в местах прохода через стены и перекрытия должна выполняться, как правило, с их непосредственной заделкой. В этих местах проводники не должны иметь соединений и ответвлений.

1.7.88 . У мест ввода заземляющих проводников в здания должны быть предусмотрены опознавательные знаки.

1.7.89 . Использование специально проложенных заземляющи х или нулевых защитных проводников для иных целей не допускается.

СОЕДИНЕНИЯ И ПРИСОЕДИНЕНИЯ ЗАЗЕМЛЯЮЩИХ И НУЛЕВЫХ ЗАЩИТНЫХ ПРОВОДНИКОВ

1.7.90 . Соединения заземляющих и нулевых защитных проводников между собой должны обеспечивать надежный контакт и выполняться посредством сварки.

Допускается в помещениях и в наружных установках без агрессивных сред выполнять соединения заземляющих и нулевых защитных проводников другими способами, обеспечивающими тр ебования ГОСТ 10434-82 «Соединения контактные электрические. Общие технические требования» ко 2-му классу соединений. При этом должны быть предусмотрены меры против ослабления и корр озии контактных соединений. Соединения заземляющих и нулевых защитных проводни ков электропроводок и ВЛ допускается выполнять теми же методами, что и фазных проводников.

Соединения заземляющих и нулевых защитных проводников должны быть доступны для осмотра.

1.7.91 . Стальные трубы электропроводок, короба, лотки и другие конструкции, используемые в качестве заземляющих или нулевых защитных проводников, должны иметь соединения, соответствующие требованиям ГОСТ 10434-82 , предъявляемым ко 2-му классу соединений. Должен быть также обеспечен надежный контакт стальных труб с корпусами электрооборудования, в которые вводятся трубы, и с соединительными (ответвительными) металлическими коробками.

1.7.92 . Места и способы соединения заземляющих проводников с протяженными естественными заземлителями (например, с трубопроводами) должны быть выбраны такими, чтобы при разъединении заземлителей для ремонтных работ было обеспечено расчетное значение сопротивления заземляющего устройства. Водомеры, задвижки и т.п. должны иметь обходные проводники, обеспечивающие непрерывность цепи заземления.

1.7.93 . Присоединение заземляющих и нулевых защитных проводн иков к частям оборудования, подлежащим заземлению или занулению, должно быть выполнено сваркой или болтовым соединением. Присоеди нение должно быть доступно для осмотра. Для болтового присоединения должны быть предусмотрены меры против ослабления и коррозии контактного соединения.

Заземление или зануление оборудования, подвергающегося частому демонтажу или установленного на движущихся частях или частях, п одверженных сотрясениям или вибрации, должно выполняться гибкими заземляющими или нулевыми защитными проводниками.

1.7.94 . Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки не допус кается.

ПЕРЕНОСНЫЕ ЭЛЕКТРОПРИЕМНИКИ

1.7.95 . Питание переносных электроприемников следует выполнять от сети напряжением не выше 380/220 В.

В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл. 1.1) переносные электроприемники могут питаться либо непосредственно от сети, либо через разделительные или понижающие трансформаторы (см. 1.7.44).

Металлические корпуса переносных электроприемников выше 42 В переменного тока и выше 110 В постоянного тока в помещениях с повышенной опасностью, особо опасных и в наружных установках должны быть заземлены или занулены, за исключением электроприемников с двойной изоляцией или питающихся от разделительных трансформаторов.

1.7.96 . Заземление или зануление переносных электроприемников должно осуществляться специальной жилой (третья - для электроприемников однофазного и постоянного тока, четвертая - для электроприемников трехфазного тока), расположенной в одной оболочке с фазными жилами переносного провода и присоединяемой к корпусу электроприемника и к специальному контакту вилки втычного соединителя (см. 1.7.97 ). Сечение этой жилы должно быть равным сечению фазных проводников. Использование для этой цели нулевого рабочего проводника , в том числе расположенного в общей оболочке, не допускается.

В связи с тем, что ГОСТ на некоторые марки кабелей предусматривает уменьшенное сечение четвертой жилы, разрешается для трехфазных переносных электроприемников применение таких кабелей впредь до соответствующего изменения ГОСТ.

Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприемников, должны быть медными, гибкими, сечением не менее 1,5 мм2 для переносных электроприемников в промышленных установках и не менее 0,75 мм2 для бытовых переносных электроприемников.

1.7.97 . Переносные электроприемники испытательных и экспериментальных установок, перемещение которых в период их работы не предусматривается , допускается заземлять с использованием стационарных или отдельных переносных заземляющих проводнико в. Пр и этом стационарные заземляющие проводники должны удовлетворять требованиям 1.7.73 - 1.7.89 , а переносные заземляющие проводники должны быть гибкими, медными, сечением не менее сечения фазных проводников , но не менее указанного в 1.7.96 .

Во втычных соединителях переносных эле ктроприемников, удлинительных проводов и кабелей к розетке должны быть подведены проводники со стороны источника питания, а к вил ке - со стороны электроприемников.

Втычные соединители должны иметь специальные контакты, к которым присоединяются заземляющие и нулевые защитные проводники.

Соединение между этими контактами при включении должно устанавливаться до того, как войдут в соприкоснов ение ко нтакты фазных проводников. Порядок разъединения контактов при отключении должен быть обратным.

Конструкция втычных соединителей должна быть такой, чтобы была исключена возможность соединения контактов фазных проводников с контактами заземления (зануления).

Если корпус втычного соединителя выполнен из металла, он должен быть электрически соединен с контактом заземления (зануления).

1.7.98 . Заземляющие и нулевые защитные проводники переносных проводов и кабелей должны иметь отличительный признак.

ПЕРЕДВИЖНЫЕ ЭЛЕКТРОУСТАНОВКИ

1.7.99 . Автономным передвижным источником питания электро энергией называется такой источник, который позволяет осуществлять питание потребителей электроэнергией независимо от стационарных источников электроэнергии (энергосистемы).

1.7.100 . Электроприемники передвижных установок могут получать питание от стационарных или передвижных источников питания электроэнергией с глухозаземленной или изолированной нейтралью.

1.7.101 . Передвижные источники могут использоваться для питания электроприемников стационарных или передвижных установок.

1.7.102 . При питании стационарных электроприемников от автономных передвижных источников режим нейтрали источника питания и защитные меры должны соответствовать режиму нейтрали и защитным мерам, принятым в сетях стационарных электроприемников.

1.7.103 . При питании электроприемников передвижных установок от стационарных или передвижных источников с глухозаземленной нейтралью должны выполняться следующие защитные меры: зануление, зануление в сочетании с повторным заземлением, защитное отключение или зануление в сочетании с защитным отключением.

При выполнении зануления передвижных электроустановок проводимость фазных и нулевых защитных проводников должна соответствовать требованиям 1.7.79.

1.7.104 . При питании электроприемников передвижных установок от стационарных и передвижных источников пита ния электроэнергией с изолирова нной нейтралью в качестве защитной меры должно выполняться защитное заземление в сочетании с металлической связью корпусов установки и источника электроэнергии или с защитным отключением (исключения - см. 1.7.107 ).

Сопротивление заземляющего устройства передвижных установок в этом случае должно соответствовать 1.7.57 и 1.7.65 (см. также 1.7.106).

Проводимость фазных проводников и проводников металлической связи должна соответствовать 1.7.79 при двухфазном замыкании на разные корпуса электрооборудования.

Допускается также не выполнять металлическую связь корпусов источника электроэнергии и установки, если как источник питания электроэнергией, так и передвижная установка имеют собственные контуры защитного заземления, обеспечивающие допустимый уровень напряже ния прикосновения при двойном замыкании на разные корпуса электрооборудован ия.

1.7.105 . При питании электроприемников передвижных установок от передвижных автономных источников питания нейтраль трехпроводных и четырехпроводных сетей трехфазного тока и выводы двухпроводных сетей однофазн ого тока, как правило, должны быть изолированы. В этом случае допускается выполнять защитное заземление только источника питания, а в качестве заземляющих проводников для за земления электроприемников использовать проводники металлической связи корпусов электрооборудования.

1.7.106 . При питании электроприемников пер едвижных установок от передвижных автономных источников с изолированной нейтралью заземляю щее устройство должно выполняться с соблюдением требований либо к его сопротивлению, либо к напряжению прикосновения при однополюсном замыкании на корпус. При выполнении заземляющего устройства с соблюдением требований к сопротивлению значение его сопротивления не должно превышать 25 Ом.

Допускается повышение указанного значения сопротивления заземляющего устройства в соответствии с 1.7.69.

При выполнении заземляющего устройства с соблюдением требований к напряжению прикосновения сопротивление не нормируется.

1.7.107 . Допускается не выполнять защитное заземление электроприемников передвижных электроустановок, питающихся от автономных передвижных источников питания с изолированной н ейтралью, в следующих случаях:

1 ) если источник питания электроэнергией и электроприемники расположены непосредственно на передвижной установке, их корпуса соединены металлической связью, а от источника не питаются другие электроустановки;

2 ) если установки (не более двух) питаются от специально предназначенного для них источника электроэнергии, не питающего другие электроустановки, и находятся на расстоянии не более 50 м от источника электроэнергии, а корпуса источника и установки соединены при помощи проводников металлической связи.

Количество электроустановок и длина питающих их кабелей не нормируются, если значения напряжений прикосновения при од нополюсном замыкании на землю не превышают нормированных. Эти з начения должны быть определены специальным расчетом или экспериментально;

3 ) если сопротивление заземляющего устройства, рассчитанного по напряжению прикосновения при однополюсных замыканиях на корпус, выше сопротивления рабочего заземления устройства постоянного контроля сопротивления изоляции.

1.7.108 . Автономные передвижные источники питания с изолированной нейтралью должны иметь устройство постоянного контроля сопротивления изоляции относительно корпуса источника электроэнергии (земли). Должна быть обеспечена возможность проверки исправности устройства контроля изоляции и его отключения.

1.7. 1 09 . Корпуса электроприемников передвижной установки должны иметь надежную металлическую свя зь с корпусом этой установки. При этом прокладка специальны х провод ников металлической связи не требуется при выполнении условия 1.7.48 , п. 1.

1.7.110 . При выполнении металлической связи корпуса источника питания с корпусом передвижной установки в качестве проводников металлической связи корпусов электрооборудования могут применяться:

1 ) пятая жила кабеля в трехфазных сетях с нулевым рабочим проводником;

2 ) четвертая жила кабеля в трехфазных сетях без нулевого рабочего проводника;

3 ) третья жила кабеля в однофазных сетях.

Проводимость фазных проводников и проводимость металлической связи должна соответствовать 1.7.79.

1.7.111 . Заземляющие и нулевые защитные проводники, а также проводники металлической связи корпусов оборудования должны быть медными, гибкими, как правило, находиться в общей оболочке с фазными проводниками и иметь равное с ними сечение.

В сетях с изолированной нейтралью допускается прокладка заземляющих проводников металлической связи корпусов оборудования отдельно от фазных проводников. При этом их сечение должно быть не менее 2,5 мм2.

Для трехфазных электроприемников передвижных установок допускается применение кабелей с сечением четвертой жилы меньше сечения фазной жилы до изменения ГОСТ на соответствующие кабели.

1.7.112 . В автономных передвижных источниках электроэнергии трехфазного тока допускается использование нулевого рабочего проводника в качестве заземляющего проводника на участке от нейтрали генератора до зажимов на щите распределительного устройства.

1.7.113 . В передвижных электроустановках с автономными передвижными источниками питания допускается наличие разъединяющих приспособлений в цепях всех проводников трехфазной и однофазной сети и проводников металлической связи корпусов электрооборудования.

1.7.114 . При использовании защитного отключения в качестве защитной меры в передвижных электроустановках питающее напряжение должно отключаться устройствами, установленными до ввода в установку.

ГЛАВА 1.8
НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

ОБЩИЕ ПОЛОЖЕНИЯ

1.8.1 . Электрооборудование до 500 кВ, вновь вводимое в эксплуатацию в энергосистемах и у потребителей, должно быть подвергнуто приемо-сдаточным испытаниям в соответс твии с требованиями настоящей главы.

В случаях, к ода указаниями Минэнерго СССР предусматриваются повышенные требования по сравнению с требованиями настоящей главы, при испытаниях электрооборудования, вводимого в эксплуатацию энергосистемами, следует руководствоваться указаниями Министерства. Этими же указаниями следует руководствоваться при испытаниях электрооборудования напряжением выше 500 кВ.

При проведении приемо-сдаточных испытаний электрооборудования, не охваченного настоящими нормами, следует руководствоваться инструкциями заводов-изготовителей.

1.8.2 . Устройства релейной защиты и электроавтоматики на электростанциях и подстанциях проверяются по инструкциям Минэнерго СССР.

Устройства защиты и автоматики электропривода и других электроустановок (кроме электростанций и подстанций) потребителей проверяются по инструкциям Минмонтажспецстроя СССР и других заинтересованных министерств и ведомств. При этом типовые инструкции при необходимости должны быть согласованы с Главгосэнергонадзором Минэнерго СССР.

1.8.3 . Помимо испытаний, предусмотренных настоящей главой, все электрооборудование должно пройти проверку работы механической части в соответствии с заводскими и монтажными инструкциями.

1.8.4 . Заключение о пригодности оборудования к эксплуатации дается на основании рассмотрения результатов всех испытаний, относящихся к данной единице оборудования.

1.8.5 . Все измерения, испытания и опробования в соответствии с действующими директивными документами, инструкциями заводов-изготовителей и настоящими нормами, произведенные монтажным персоналом в процессе монтажа, а также нала дочным персоналом непосредственно перед вводом электрооборудования в эксплуатацию, должны быть оформлены соответствующими актами и протоколами.

1.8.6 . Испытание повышенным напряжением обязательно для всего электрооборудования 35 кВ и ниже, а при наличии испытательных устройств - и для электрооборудования напряжением выше 35 кВ, за исключением случаев, оговоренных в настоящей главе.

1.8.7 . Изоляторы и оборудование с номинальным напряжением, превышающим номинальное напряжение установки, в которой они применены, могут испытываться повышенным напряжением по нормам для соответствующего класса изоляции электроустановки.

1.8.8 . Изоляция электрооборудования иностранных фирм (кроме вращающихся машин), имеющая электрическую прочность ниже предусмотренной нормами настоящей главы, должна испытываться напряжением, составляющим 90 % заводского испытательного напряжения, если нет других указаний поставщика.

1.8.9 . Испытание изоляции аппаратов повышенным напряжением промышленной частоты должно производиться, как правило , совместно с испытанием изоляции шин распредел ительного устройства (без расшиновки). При этом испытательное напряжение допускается принимать по нормам для оборудования, имеющего наименьшее испытательное напряжение.

1.8.10 . При проведении нескольких видов испытаний изоляции электрооборудования испытанию повышенным напряжением должны предшествовать другие виды ее испытаний.

1.8.11 . Испытание изоляции напряжением промышленной частоты, равным 1 кВ, может быть заменено измерением одноминутного значения сопротивления изоляции мегаомметром на 2,5 кВ. Если при этом значение сопротивления меньше привед енного в нормах, испытание напряжением 1 кВ промышленной частоты является обязательным.

Испытание напряжением промышленной частоты изоляци и вторичных цепей с рабочим напряжением более 60 В электроустановок энергосистем является обязательным.

1.8.12 . В настоящей главе применяются следующие термины:

1 . Испытательное напряжение промышленной частоты - действующее значение напряжения частотой 50 Гц, практически синусоидального, которое должна выдерживать в течение 1 мин (или 5 мин) внутренняя и внешняя изоляция электрооборудования при определенных условиях испытания.

2 . Электрооборудование с нормальной изоляцией - электрооборудование, предназначенное для применения в электроустановках, подверженных действию атмосферных перенапряжений при обычных мерах по грозозащите.

3 . Электрооборудование с облегченной изоляцией - эле ктрооборудование , предназначенное для применения лишь в установках, не подверженных действию атмосферных перенапряжений или оборудованных специальными устройствами грозозащиты, ограничивающими амплитудное значение атмосферных перенапряжений до значения, не превышающего амплитудного значения испытательного напряжения промышленной частоты.

4 . Аппараты - выключатели всех классов напряжения, разъединители, отделители, короткозамыкатели, предохранители , разрядники, токоограничивающие реакторы, конденсаторы, комплектные экранированны е токопроводы.

5 . Ненормированная измеряемая величина - величина, абсолютное значение которой не регламентировано нормативными указаниями. Оценка состояния оборудования в этом случае производится путем сопоставления с данными аналогичных измерений на однотипном оборудовании, имеющем заведомо хорошие характеристики, или с результатами остальных испытаний.

6 . Класс напряжения электрооборудования - номинальное напряжение электрической системы, для работы в которой предназначено данное электрооборудование.

СИНХРОННЫЕ ГЕНЕРАТОРЫ И КОМПЕНСАТОРЫ

1.8.13 . Синхронные генераторы мощностью более 1 МВт напряжением выше 1 кВ, а также синхронные компенсаторы должны испытываться в полном объеме настоящего параграфа.

Генераторы мощностью до 1 МВт напряжением выше 1 кВ должны испытываться по пп. 1- 5, 7- 15 настоящего параграфа.

Г енераторы напряжением до 1 кВ независимо от их мощности должны испытываться по пп. 2, 4, 5, 8, 10- 14 настоящего параграфа.

1 . Определение возможности включения без сушки генераторов выше 1 кВ. При решении вопроса о необходимости сушки компаундированной, термореактивной и гильзовой изоляции обмотки статора синхронного генератора или синхронного компенсатора следует руководствоваться указаниями разд. 3 «Электрические машины» СНиП 3.05.06-85 . «Электротехнические устройства» Госстроя России. Для генераторов с бумажно-масляной изоляцией необходимость сушки устанавливается в соответствии с инструкцией завода-изготовителя.

Для турбогенераторов типа ТГВ-300 допускается включение без сушки при коэффициенте нелинейности более 3, если остальные характеристики изоляции ( R 60 / R 15 и R60) удовлетворяют установленным нормам.

2 . Измерение сопротивления изоляции. Сопротивление изоляции должно быть не менее значений, приведенных в табл. 1.8.1 .

3 . Испытан ие изоляц ии обмотки статора повышенным выпрямленным напряжением с измерением тока утечки по фазам. Испытанию подвергается каждая фаза или ветвь в отдельности при других фазах или ветвях, соединенных с корпусом.

У генераторов с водяным охлаждением обмотки статора испытание производится в случае, если возможность этого предусмотрена в конструкции генератора.

Значения испытательного напряжения приведены в табл. 1.8.2.

Для турбогенераторов типа ТГВ-300 испытание следует производить по ветвям.

Испытательное выпрямленное напряжение для генераторов типов ТГВ-200 и ТГВ-300 следует принимать в соответствии с инструкцией по эксплуатации этих генераторов.

Измерение токов утечки для построения кривых зависимости их от напряжения производится не менее чем при пяти значениях выпрямленного напряжения - от 0,2 Umax до Umax равными ступенями. На каждой ступени напряжения выдерживается в течение 1 мин. При этом фиксируются токи утечки через 15 и 60 с.

Оценки полученной характеристики производятся в соответствии с требованиями разд. 3 «Электрические машины» СНиП 3.05.06-85 Госстроя России.

Таблица 1.8.1. Допустимое сопротивление изоляции

Испытуемый объект

Напряжение мегаомметра, кВ

Сопротивление изоляции

Обмотка статора напряжением до 1 кВ (каждая фаза в отдельности относительно корпуса и други х заземленных фаз)

1

Не менее 0,5 МОм при температуре 10 - 30 °С

То же напряжением выше 1 кВ

2,5

Должно соответствовать требованиям, приведенным в разд. 3 «Электрические машины» СНиП 3.05.06-85 . У генераторов с водяным охлаждением обмоток сопротивление изоляции измеряется без воды в обмотке статора при соединенных с экраном мегаомметра водосборных коллекторах, изолированных от внешней системы охлаждения

Обмотка ротора

1 (допускается 0,5)

Не менее 0,5 МОм при температуре 10 - 30 °С. Допускается ввод в эксплуатацию неявнополюсных роторов, имеющих сопротивление изоляции не ниже 2 кОм при температуре +75 °С или 20 кОм при +20 °С

Подшипники генератора и сопряженного с ним возбудителя

1

Сопротивление изоляции, измеренное относительно фундаментной плиты при полностью собранных маслопроводах, должно быть не менее 0,3 МОм для гидрогенератора и не менее 1 МОм для турбогенератора. Для гидрогенератора измерение производится, если позволяет конструкция генератора

Водородные уплотнения вала

1

Не менее 1 МОм

Щиты вентиляторов турбогенераторов серии ТВВ

1

Сопротивление изоляции, измеренное относительно внутреннего щита и между полущитами вентиляторов, должно быть не менее 0,5 МОм

Щиты вентиляторов турбогенераторов серии ТГВ

Сопротивление изоляции, измеренное между частями диффузоров, должно быть не менее 1 МОм

Доступные изолированные стяжные болты стали статора

1

Не менее 1 МОм

Диффузор и обтекатель у турбогенераторов серии ТГВ

0,5

Сопротивление изоляции, измеренное между уплотнением и задним диском диффузора, диффузором и внутренним щитом, обтекателем и внутренним щитом, двумя половинками обтекателя, должно быть не менее 1 МОм

Термоиндикаторы генераторов и синхронных компенсаторов:

с косвенным охлаждением обмоток статора

0,25

Сопротивление изоляции, измеренное совместно с сопротивлением Соединительных проводов, должно быть не менее 1 МОм

с непосредственным охлаждением обмоток статора

0,5

Сопротивление изоляции, измеренное совместно с сопротивлением соединительных проводов, должно быть не менее 0,5 МОм

Цепи возбуждения генератора и возбудителя (без обмоток ротора и электромашинного возбудителя)

1 (допускается 0,5)

Сопротивление изоляции, измеренное с сопротивлением всей присоединенной аппаратуры, должно быть не менее 1 МОм

Таблица 1.8.2. Испытательное выпрямленное напряжение для обмоток статоров синхронных генераторов и компенсаторов

Мощность генератора, МВт, компенсатора, МВ ·А

Номинальное напряжение, кВ

Амплитудное испытательное напряжение, кВ

Менее 1

Все напряжения

2,4 Uном + 1,2

1 и более

До 3,3

2,4 Uном + 1,2

Выше 3,3 до 6,6

3 Uном

Выше 6,6

2,4 Uном + 3,6

4 . Испытание изоляции повышенным напряжением промышленной частоты. Испытание проводится по нормам, приведенным в табл. 1.8.3 . Испытанию подвергается каждая фаза или ветвь в отдельности при других фазах или ветвях, соединенных с корпусом.

Таблица 1.8.3. Испытательное напряжение промышле нной частоты дл я обмоток синхро нных генераторов и компе нсаторов

Испытуемый объек т

Характеристик а электрич еской маш ины

Испытательное напряж ение, кВ

Обмотка статора синхронного генератора и компенсатора

Мощность до 1 МВт, номинальное напряжение выше 100 В

1,6 Uном + 0,8, но не менее 1,2

Мощность более 1 МВт, номинальное напряжение до 3,3 кВ

1,6 Uном + 0,8

То же, но номинальное напряжение выше 3,3 кВ до 6,6 кВ

2 Uном

Цепи возбуждения генератора со всей присоединенной аппаратурой (без обмоток ротора и возбудителя)

-

1

Реостат возбуждения

-

1

Резистор гашения поля

-

2

Заземляющий резистор

-

1,5 Uном генератора

Обмотка статора синхронных генераторов, у которых стыковка частей статора производится на месте монтажа (гидрогенераторы) по окончании полной сборки обмотки и изолировки соединений

Мощность более 1 МВт, номинальное напряжение выше 6,6 кВ

1,6 Uном + 2,4

Мощность до 1 МВт, номинальное напряжение выше 100 В

2 Uном + 1, но не менее 1,5

Мощность более 1 МВт, номинальное напряжение до 3,3 кВ

2 Uном +1

То же, но номинальное напряжение выше 3,3 кВ до 6,6 кВ

2,5 Uном

То же, но номинальное напряжение выше 6,6 кВ

2 Uном + 3

Обмотка явнополюсного ротора

-

7,5 Uном возбуждения генератора, но не менее 1,1 и не более 2,8

Обмотка неявнополюсного ротора

-

1 (в том случае, если это не противоречит требованиям технических условий завода-изготовителя)

Продолжительность приложения нормированного испытательного напряжения 1 мин.

При проведении испытаний изоляции повышенным напряжением промышленной частоты следует руководствоваться следующим:

а) испытание изоляции обмоток статора генератора рекомендуется производить до ввода ротора в статор. Если стыковка и сборка статора гидрогенератора осуществляются на монтажной площадке и впоследствии статор устанавливается в шахту в собранном виде, то изоляция его испытывается дважды: после сборки на монтажной площадке и после установки статора в шахту до ввода ротора в статор.

В процессе испытания осуществляется наблюдение за состоянием лобовых частей машины: у турбогенераторов - при снятых торцовых щитах, у гидрогенераторов - при открытых вентиляционных люках;

б) испытание изоляции обмотки статора для машин с водяным охлаждением следует производить при циркуляции дистиллированной воды в системе охлаждения с удельным сопротивлением не менее 75 кОм/см и номинальном расходе;

в) после испытания обмотки статора повышенным напряжением в течение 1 мин у генераторов 10 кВ и выше испытательное напряжение снизить до номинального напряжения генератора и выдержать в течение 5 мин для наблюдения за коронированием лобовых частей обмоток статора. При этом не должно быть сосредоточенного в отдельных точках свечения желтого или красного цвета, появления дыма, тления бандажей и тому подобных явлений. Голубое и белое свечение допускается;

г) испытание изоляции обмотки ротора турбогенераторов производится при номинальной частоте вращения ротора.

5 . Измерение сопротивления постоянному току. Нормы допустимых отклонений сопротивления постоянному току приведены в табл. 1.8.4 .

Таблица 1.8.4. Допустимое отклонение сопротивления постоянному току

Испытуемый объект

Норма

Обмотка статора (измерение производить для каждой фазы или ветви в отдельности)

Измеренные сопротивления в практически холодном состоянии обмоток различных фаз не должны отличаться одно от другого более чем на 2 %. Вследствие конструктивных особенностей (большая длина соединительных дуг и пр.) расхождение между сопротивлениями ветвей у некоторых типов генераторов может достигать 5 %.

Обмотка ротора

Измеренное сопротивление обмоток не должно отличаться от данных завода-изготовителя более чем на 2 %. У явнополюсных роторов измерение производится для каждого полюса в отдельности или попарно

Резистор гашения поля, реостаты возбуждения

Сопротивление не должно отличаться от данных завода-изготовителя более чем на 10 %

6 . Измерение сопротивления обмотки ротора переменному току промышленной частоты. Производится для генераторов мощностью более 1 МВт. Измерение сле дует производить при напряжении не более 220 В на трех-четырех ступенях частот вращения, включая номинальную, а также в неподвижном состоянии. Для явнополюсных машин при неизолированных местах соединений в неподвижном состоянии измерение прои зводится для каждого полюса в отдельности или попарно. Отклонения измеренных значений от данных завода-изготовителя или от среднего сопротивления полюсов должны находиться в пределах точности измерения.

7 . Измерение воздушного зазора между статором и ротором генератора. Если инструкциями на генераторы отдельных типов не предусмотрены более жесткие нормы, то зазоры в диаметрально противоположных точках могут отличаться друг от друга не более чем:

на 5 % среднего значения (равного их полусумме) - для турбогенераторов 150 МВт и выше с непосредственным охлаждением проводников;

на 10 % - для остальных турбогенераторов;

на 20 % - для гидрогенераторов.

Измерение зазора у явнополюсных машин производится под всеми полюсами.

8 . Проверка и испытание системы возбуждения. Проверку и испытание электромашинных возбудителей следует производить в соответствии с 1.8.14 . Проверка и испытание полупроводниковых высокочастотных возбудителей производятся в соответствии с инструкцией завода-изготовителя.

9 . Определение характеристик генератора:

а) трехфазного КЗ. Характеристика снимается при изменении тока до номинального. Отклонения от заводской характеристики должны находиться в пределах точности измерения.

Снижение измеренной характеристики, которое превышает точность измерения, свидетельству ет о наличии витковых замыканий в обмотке ротора.

У генераторов, работающих в блоке с трансформатором, снимается характеристика КЗ всего блока (с установкой закоротки за трансформатором). Характеристику собственно генератора, работающего в блоке с трансформатором, допускается не определять, если имеются протоколы соответствующих испытаний на стенде заводов-изготовителей.

У синхронных компенсаторов без разгонного двигателя снятие характеристик трехфазного КЗ производится на выбеге в том случае, если не имеется характеристики, снятой на заводе;

б) холостого хода. Подъем напряжения номинальной частоты на холостом ходу производить до 130 % номинального напряжения турбогенераторов и синхронных компенсаторов, до 150 % номинального напряжения гидрогенераторов. Допускается снимать характеристику холостого хода турбо- и гидрогенератора до номинального тока возбуждения при пониженной частоте вращения генератора при условии, что напряжение на обмотке статора не будет превосходить 1,3 номинального. У синхронных компенсаторов разрешается снимать характеристику на выбеге. У генераторов, работающих в блоке с трансформаторами, снимается характеристика холостого хода блока; при этом генератор возбуждается до 1,15 номинального напряжения (ограничивается трансформатором). Характеристику холостого хода собственно генератора, отсоединенного от трансформатора блока, допускается не снимать, если имеются протоколы соответствующих испытаний на заводе-изготовителе. Отклонение характеристики холостого хода от заводской не нормируется, но должно быть в пределах точности измерения.

10 . Испытание междувитковой изоляции. Испытание сле дует производить подъемом напряжения номин альной частоты генератора на холостом ходу до значения, соответствующего 150 % номинального напряжения статора гидрогенераторов, 130 % - турбогенераторов и синхронных компенсаторов. Для генераторов, работающих в блоке с трансформатором, - см. указания п. 9 . При этом следует проверить симметрию напряжении по фазам. Продолжительность испытания при наибольшем напряжении - 5 мин. Испытание междувитковой изоляции рекомендуется производить одновременно со снятием характеристики холостого хода.

11 . Измерение вибрации. Вибрация (удвоенная амплитуда колебаний) подшипников синхронных генераторов и компенсаторов, измеренная в трех направлениях (у гидрогенераторов вертикального исполнения производится измерение вибрации крестовины со встроенными в нее направляющими подшипниками), и их возбудителей не должна превышать значений, приведенных в табл. 1.8.5 .

12 . Проверка и испытание системы охлаждения. Производятся в соответствии с инструкцией завода-изготовителя.

13 . Проверка и испытание системы маслоснабжения. Производятся в соответствии с инструкцией завода-изготовителя.

14 . Проверка изоляции подшипника при работе генератора (компенсатора). Производится путем измерения напряжения между концами вала, а также между фундаментной плитой и корпусом изолированного подшипника. При этом напряжение между фундаментной плитой и подшипником должно быть не более напряжения между концами вала. Различие между напряжениями более чем на 10 % указывает на неисправность изоляции.

Таблица 1.8.5. Наибольшая допустимая вибрация подшипников (крестовины) синхронных генераторов, компенсаторов и их возбудителей

Номинальная частота вращения ро т ора, мин-1

3000*

1500 - 500**

375 - 214

187

До 100

Вибрация, мкм

40

70

100

150

180

_____________

* Для генераторов блоков мощнос тью 150 МВт и более вибрация не должна превышать 30 мкм.

**Для синхронных компенсаторов с частотой вращения ротора 750 - 1000 мин-1 вибрация не должна превышать 80 мкм.

15 . Испытание генератора (компенсатора) под нагрузкой. Нагрузка определяется практическими возможностями в период приемо-сдаточных испытаний. Нагрев статора при данной нагруз ке должен соответствовать паспортным данным.

16 . Измерение остаточного напряжения генератора при отключении АГП в цепи ротора. Значение остаточного напряжения не нормируется.

17 . Определение индуктивных сопротивлений и постоянных времени генератора. Значения индуктивных сопротивлений и постоянных времени не нормируются.

МАШИНЫ ПОСТОЯННОГО ТОКА

1.8.14 . Машины постоянного тока мощностью до 200 кВт, напряжением до 440 В следует испытывать по пп. 1, 2, 4в, 8; все остальные - дополнительно по пп. 3, 4а, 5 настоящего параграфа.

Возбудители синхронных генераторов и компенсаторов следует испытывать по пп. 1 - 6, 8 настоящего параграфа.

Измерение по п. 7 настоящего параграфа следует производить для машин, поступивших на место монтажа в разобранном виде.

1 . Определение возможности без сушки машин постоянного тока. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85 . «Электрические устройства» Госстроя России.

2. Измерение сопротивления изоляции. Измерение сопротивления изоляции обмоток относительно корпуса и бандажей машины, а также между обмотками производится мегаомметром на напряжение 1 кВ.

Сопротивление изоляции должно быть не ниже:

между обмотками и каждой обмотки относительно корпуса при температуре 10 - 30 ° С 0,5 МОм;

бандажей якоря (кроме возбудителей) не нормируется;

бандажей якоря возбудителя 1 МОм.

3 . Испытание изоляции повышенным напряжением промышленно й частоты. Испытание производится по нормам, приведенным в табл. 1.8.6 . Продолжительность приложения нормированного испытательного напряжения 1 мин.

4 . Измерение сопротивления постоянному току:

а) обмоток возбуждения. Значение сопротивления должно отличаться от данных завода-изготовителя не более чем на 2 %;

б) обмотки якоря (между коллекторными пластинами). Значения сопротивлений должны отличаться одно от другого не более чем на 10 %, за исключением случаев, когда закономерные колебания этих величин обусловлены схемой соединения обмоток;

в) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значения сопротивлений должны отличаться от данных завода изготовителя не более чем на 10 %.

Таблица 1.8.6. Испытательное напряжение промышленной частоты для изоляции машин постоянного тока

Испытуемый объект

Характеристика электрической машины

Испытательное напряжение, кВ

Обмотка машины постоянного тока (кроме возбудителя синхронной машины)

Номинальное напряжение до 100 В

1,6 Uном + 0,8

Мощность до 1 МВт, номинальное напряжение выше 100 В

1,6 Uном + 0,8, но не менее 1,2

Мощность выше 1 МВт, номинальное напряжение выше 100 В

1,6 Uном + 0,8

Обмотки возбудителя синхронного генератора

-

8 Uном, но не менее 1,2 и не более 2,8

Обмотки возбудителя синхронного двигателя (синхронного компенсатора)

-

8 Uном, но не менее 1,2

Бандажи якоря

-

1

Реостаты и пускорегулировочные резисторы (испытание может проводиться совместно с цепями возбуждения)

-

1

5 . Снятие характеристики холостого хода и испытание витковой изоляции. Подъем напряжения следует производить для генераторов постоянного тока до 130 % номинального напряжения; для возбудителей - до наибольшего (потолочного) или установленного заводом-изготовителем напряжения. При испытании витковой изоляции машин с числом полюсов более четырех среднее напряжение между соседними коллекторными пластинами должно быть не выше 24 В. Продолжительность испытания витковой изоляции 5 мин.

Отклонение полученных значений характеристики от значений заводской характеристики должно находиться в пределах точности измерения.

6 . Снятие нагрузочной характеристики. Следует производить для возбудителей при нагрузке до значения не ниже номинального тока возбуждения генератора. Отклонение от заводской характеристики не нормируется.

7 . Измерение воздушных зазоров между полюсами. Размеры зазора в диаметрально противоположных точках должны отличаться один от другого не более чем на 10 % среднего размера зазора. Для возбудителей турбогенераторов 300 МВт и более это отличие не должно превышать 5 %.

8 . Испытание на холостом ходу и под нагрузкой. Определяется предел регулирования частоты вращения или напряжения, который должен соответствовать заводским и проектным данным.

При работе под нагрузкой проверяется степень искрения, которая оценивается по шкале, приведенной в табл. 1.8.7.

Таблица 1.8.7. Характеристика искрения коллектора

Степень искрения

Характеристика степени искрения

Состояние коллектора и щеток

1

Отсутствие искрения

Отсутствие почернения на коллек торе и нагара на щетках

1,25

Слабое точечное искренне под небольшой частью щетки

То же

1,5

Слабое искренне под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых при протирании поверхности коллектора бензином, а также появление следов нагара на щетках

2

Искрение под всем краем щетки появляется только при кратковременных толчках нагрузки и перегрузки

Появление следов почернения на коллекторе, не устраняемых при протирании поверхности коллектора бензином, а также появление следов нагара на щетках

3

Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы

Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток

Если степень искрения специально не оговорена заводом-изготовителем, то при номинальном режиме она должна быть не выше 1,5.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

1.8.15 . Электродвигатели переменного тока до 1 кВ испытываются по пп. 2, 4, 6, 10, 11.

Электродвигатели переменного тока выше 1 кВ испытываются по пп. 1 - 4, 7, 9 - 11.

По пп. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде.

1 . Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85 . «Электротехнические устройства» Госстроя России.

2 . Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8 .

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока

Испытуемый объект

Напряжение мегаомметра, кВ

Сопро тивлен ие изоляции

Обмотка статора напряжением до 1 кВ

1

Не менее 0,5 МОм при температуре 10 - 30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

0,5

Не менее 0,2 МОм при температуре 10 - 30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Термоиндикатор

0,25

Не нормируется

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3 . Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе.

Испытание обмотк и статора производится для каждой фазы в отдельности относ ительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4 . Измерение сопротивления постоянному току:

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более.

Измеренные сопротивления обмоток различных фаз должны отличатся друг от друга или от заводских данных не более чем на 2 %;

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10 %.

5 . Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90 ° , должны отличаться не более чем на 10 % среднего размера.

6 . Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10 .

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока

Испытуемый объект

Характеристика эл ектродвигателя

Испытательное напряжение, к В

Обмотка статора

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

1,6 Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

1,6 Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

2 Uном

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

1,6 Uном + 2,4

Обмотка ротора синхронного электродвигателя

-

8 Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

-

1

Реостат и пускорегулировочный резистор

-

1

Резистор гашения поля синхронного электродвигателя

-

2

7 . Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниж е:

Синхронная частота вращения

электродвигателя, Гц ................... 50           25         16,7        12,5 и ниже

Допустимая вибрация, мкм ........ 50           100       130         160

8 . Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2 - 4 мм.

9 . Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2 - 0,25 МПа (2 - 2,5 кгс/см2). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании.

10 . Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч.

11 . Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования.

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей

Номинальный диаметр вала, мм

Зазор, мм, при частоте вращения, Гц

Менее 16,7

16,7 - 25

более 25

18-30

0,040-0,093

0,060-0,130

0,140-0,280

30-50

0,050-0,112

0,075-0,160

0,170-0,340

50-80

0,065-0,135

0,095-0,195

0,200-0,400

80-120

0,080-0,160

0,120-0,235

0,230-0,460

120-180

0,100-0,195

0,150-0,285

0,260-0,580

180-260

0,120-0,225

0,180-0,300

0,300-0,600

260-360

0,140-0,250

0,210-0,380

0,340-0,680

360-500

0,170-0,305

0,250-0,440

0,380-0,760

СИЛОВЫЕ ТРАНСФО Р МАТОРЫ, АВТОТРАНСФОРМАТОРЫ, МАСЛЯНЫЕ РЕАКТОРЫ И ЗАЗЕМЛЯЮЩИЕ ДУГОГАСЯЩИЕ РЕАКТОРЫ (ДУГОГАСЯЩИЕ КАТУШКИ)

1.8.16 . Маслонаполненные трансформаторы мощностью до 1,6 МВ · А испытываются по пп. 1, 2, 4, 8, 9, 11 - 14.

Маслонаполненные трансформаторы мощностью более 1,6 МВ · А, а также ответственные трансформаторы собственных нужд электростанций независимо от мощности испытываются в полном объеме, предусмотренном настоящим параграфом.

Сухие и заполненные совтолом трансформаторы всех мощностей испытываются по пп. 1 - 8, 12, 14.

1 . Определение условий включения трансформаторов. Следует производить в соответствии с инструкцией «Трансформаторы силовые. Транспортирование, разгрузка, хранение, монтаж и ввод в эксплуатацию» (РД 16.363-87).

2 . Измерение характеристик изоляции. Допустимые значения сопротивления изоляции R 60 , коэффициент абсорбции R 60 / R 15 , тангенс угла диэлектрических потерь и отношения С2/С50 и D С /С регламентируются инструкцией по п. 1.

3 . Испытание повышенным напряжением промышленной частоты:

а) изоляции обмоток вместе с вводами. Испытательные напряжения приведены в табл. 1.8.11. Продолжительность приложения нормированного испытательного напряжения 1 мин.

Испытание повышенным напряжением промышленной частоты изоляции обмоток маслонаполненных трансформаторов при вводе в эксплуатацию не обязательно.

Испытание повышенным напряжением промышленной частоты изоляции обмоток сухих трансформаторов обязательно и производится по нормам табл. 1.8.11 для аппаратов с облегченной изоляцией.

Импортные трансформаторы разрешается испытывать напряжениями, указанными в табл. 1.8.11, лишь в тех случаях, если они не превышают напряжения, которым данный трансформатор был испытан на заводе.

Таблица 1.8.11. Испытатель н ое напр яжение промышленной частоты внутренней изоляции силовых маслонаполненных трансформаторов и реакторов с нормальной изоляцией и трансформаторов с облегченной изоляцией (сухих и маслонаполненных)

Класс напряжения обмотки, кВ

Испытательное напряжение по о тношению к корпусу и другим обмоткам, кВ, для изоляции

Класс напряжения обмотки, кВ

Испытательное напряжение по отношению к корпусу и другим обмоткам, кВ, для изоляции

нормальной

облегченной

нормальной

облегченной

До 0,69

4,5

2,7

35

76,5

-

3

16,2

9

110

180

-

6

22,5

15,4

150

207

-

10

31,5

21,6

220

292,5

-

15

40,5

33,3

330

414

-

20

49,5

-

500

612

-

Изоляция импортных трансформаторов, которую поставщик испытал напряжением ниже указанного в ГОСТ 18472-88, испытывается напряжением, значение которого устанавливается в каждом случае особо.

Испытательное напряжение заземляющих реакторов на напряжение до 35 кВ аналогично приведенным для трансформаторов соответствующего класса.

Изоляция линейного вывода обмотки трансформаторов классов напряжения 110 кВ и выше, имеющих неполную изоляцию нейтрали (испытательное напряжение 85 и 100 кВ), испытывается только индуктированным напряжением, а изоляция нейтрали - приложенным напряжением;

б) изоляции доступных стяжных шпилек, прессующих колец и ярмовых балок. Испытание следует производить в случае осмотра активной части. Испытательное напряжение 1 - 2 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4 . Измерение сопротивления обмоток постоянному току. Производится на всех ответвлениях, если для этого не потребуется выемки сердечника. Сопротивление должно отличаться не более чем на 2 % от сопротивления, полученного на таком же ответвлении других фаз, или от данных завода-изготовителя.

5 . Проверка коэффициента трансформации. Производится на всех ступенях переключения. Коэффициент трансформации должен отличаться не более чем на 1% от значений, полученных на том же ответвлении на других фазах, или от данных завода-изготовителя. Для трансформаторов с РПН разница между коэффициентами трансформации не должна превышать значения ступени регулирования.

6 . Проверка группы соединения трехфазных трансформаторов и полярности выводов однофазных трансформаторов. Производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Группа соединений должна соответствовать паспортным данным и обозначениям на щитке.

7 . Измерение тока и потерь холостого хода. Производится одно из измерений, указанных ниже:

а) при номинальном напряжении. Измеряется ток холостого хода. Значение тока не нормируется;

б) при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения).

8 . Проверка работы переключающего устройства и снятие круговой диаграммы. Снятие круговой диаграммы следует производить на всех положениях переключателя. Круговая диаграмма не должна отличаться от снятой на заводе-изготовителе. Проверку срабатывания переключающего устройства и давления контактов следует производить согласно заводским инструкциям.

9 . Испытание бака с радиаторами гидравлическ им давлением. Производится гидравлическим давлением столба масла, высота которого над уровнем заполненного расширителя принимается: для трубчатых и гладких баков 0,6 м; для баков волнистых, радиаторных или с охладителями 0,3 м.

Продолжительность испытания 3 ч при температуре масла не ниже +10 ° С. При испытании не должно наблюдаться течи масла.

10 . Проверка системы охлаждения. Режим пуска и работы охлаждающих устройств должен соответствовать инструкции завода-изготовителя.

11 . Проверка состояния силикагеля. Индикаторный силикагель должен иметь равномерную голубую окраску зерен. Изменение цвета свидетельствует об увлажнении силикагеля.

12 . Фазировка трансформаторов. Должно иметь место совпадение по фазам.

13 . Испытание трансформаторного масла. Свежее масло перед заливкой вновь вводимых трансформаторов, прибывающих без масла, должно быть испытано по показателям пп. 1, 2, 4 - 12 табл. 1.8.38 .

Из трансформаторов, транспортируемых без масла, до начала монтажа следует произвести отбор пробы остатков масла (со дна).

Электрическая прочность остатков масла в трансформаторах напряжением 110 - 220 кВ должна быть не ниже 35 кВ и в трансформаторах напряжением 330 - 500 кВ - не ниже 45 кВ.

Масло из трансформаторов напряжением 110 кВ и выше, транспортируемых с маслом, до начала монтажа испытывается по показателям пп. 1 - 6 и 12 табл. 1.8.38.

Испытание масла из трансформаторов с массой масла более 1 т, прибывающих с маслом, при отсутствии заводского протокола испытания масла перед включением в работу производится по показателям пп. 1 - 11 табл. 1.8.38, а масла из трансформаторов напряжением 110 кВ и выше, кроме того, по п. 12 табл. 1.8.38.

Испытание масла, залитого в трансформатор, перед включением его под напряжение после монтажа производится по показателям пп. 1 - 6 табл. 1.8.38.

При испытании масла из трансформаторов напряжением 110 кВ и выше по показателям пп. 1 - 6 табл. 1.8.38 следует производить и измерение тангенса угла диэлектрических потерь масла. Измерение тангенса угла диэлектрических потерь масла следует производить также у трансформаторов, имеющих повышенное значение тангенса угла диэлектрических потерь изоляции.

Масло из трансформаторов I и II габаритов, прибывающих на монтаж заполненными маслом, при наличии удовлетворяющих нормам показателей заводского испытания, проведенного не более чем за 6 мес. до включения трансформатора в работу, разрешается испытывать только по показателям пп. 1 и 2 табл. 1.8.38.

14 . Испытание включением толчком на номинальное напряжение. В процессе 3- 5-кратного включения трансформатора на номинальное напряжение не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора.

Трансформаторы, смонтированные по схеме блока с генератором, рекомендуется включать в сеть подъемом напряжения с нуля.

15 . Испытание вводов. Следует производить в соответствии с 1.8.31 .

16 . Испытание встроенных трансформаторов тока. Следует производить в соответствии с 1.8.17 .

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

1.8.17 . Измерительные трансформаторы испытываются в объеме, предусмотренном настоящим параграфом.

1 . Измерение сопротивления изоляции:

а) первичных обмоток. Производится мегаомметром на напряжение 2500 В. Значение сопротивления изоляции не нормируется.

Для трансформаторов тока напряжением 330 кВ типа ТФКН-330 измерение сопротивления изоляции производится по отдельным зонам; при этом значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.12.

б) вторичных обмоток. Производится мегаомметром на напряжение 500 или 1000 В.

Сопротивление изоляции вторичных обмоток вместе с подсоединенными к ним цепями должно быть не менее 1 МОм.

2 . Измерение тангенса угла диэлектрических потерь изоляции. Производится для трансформаторов тока напряжением 110 кВ и выше.

Таблица 1.8.12. Наименьшее допустимое сопротивление изоляции первичных обмоток трансформаторов тока т ипа ТФКН-330

Измеряемы й участок изоляции

Сопротивление изоляции, МОм

Основная изоляция относительно предпоследней обкладки

5000

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

3000

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

1000

Таблица 1.8.13. Наибольший допустимый тангенс угла диэлектрических потерь изоляции трансформаторов тока

Наименование испытуемого объекта

Тангенс угла диэлектрических потерь, %, при номинальном напряжении, кВ

110

150 - 220

330

500

Маслонаполненные трансформаторы тока (основная изоляция)

2,0

1,5

-

1,0

Трансформаторы тока типа ТФКН-330:

основная изоляция относительно предпоследней обкладки

-

-

0,6

-

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

-

-

0,8

-

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

-

-

1,2

-

Тангенс угла диэлектрических потерь изоляции трансформаторов тока при температуре +20 ° С не должен превышать значений, приведенных в табл. 1.8.13.

3 . Испытание повышенным напряжением промышленной частоты:

а) изоляции первичных обмоток. Испытание является обязательным для трансформаторов тока и трансформаторов напряжения до 35 кВ (кроме трансформаторов напряжения с ослабленной изоляцией одного из выводов).

Значения испытательных напряжений для измерительных трансформаторов указаны в табл. 1.8.14.

Продолжительность приложения нормированного испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин;

б) изоляции вторичных обмоток. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4 . Измерение тока холостого хода. Производится для каскадных трансформаторов напряжением 110 кВ и выше на вторичной обмотке при номинальном напряжении. Значение тока холостого хода не нормируется.

5 . Снятие характеристик намагничивания магнитопровода трансформаторов тока. Следует производить при изменении тока от нуля до номинального, если для этого не требуется напряжение выше 380 В.

Таблица 1.8.14. Испытательное напряжение промышленной частоты для измерительных трансформаторов

Исполнение изоляции измерительного трансформатора

Испытательное напряжение, кВ, при номинальном напряжении, кВ

3

6

10

15

20

35

Нормальная

21,6

28,8

37,8

49,5

58,5

85,5

Ослабленная

9

14

22

33

-

-

Для трансформаторов тока, предназначенных для питания устройств релейной защиты, автоматических аварийных осциллографов, фиксирующих приборов и т.п., когда необходимо проведение расчетов погрешностей, токов небаланса и допустимой нагрузки применительно к условиям прохождения токов выше номинального, снятие характеристик производится при изменении тока от нуля до такого значения, при котором начинается насыщение магнитопровода.

При наличии у обмоток ответвлений характеристики следует снимать на рабочем ответвлении.

Снятые характеристики сопоставляются с типовой характеристикой намагничивания или с характеристиками намагничивания других однотипных исправных трансформаторов тока.

6 . Проверка полярности выводов (у однофазных) или группы соединения (у трехфазных) измерительных трансформаторов. Производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Полярность и группа соединений должны соответствовать паспортным данным.

7 . Измерение коэффициента трансформации на всех ответвлениях. Производится для встроенных трансформаторов тока и трансформаторов, имеющих переключающее устройство (на всех положениях переключателя). Отклонение найденного значения коэффициента от паспортного должно быть в пределах точности измерения.

8 . Измерение сопрот ивления обмоток постоянному току. Производится у первичных обмоток трансформаторов тока напряжением 10 кВ и выше, имеющих переключающее устройство, и у связующих обмоток каскадных трансформаторов напряжения. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2 %.

9 . Испытание трансформаторного масла. Производится у измерительных трансформаторов 35 кВ и выше согласно 1.8.33 .

Для измерительных трансформаторов, имеющих повышенное значение тангенса угла диэлектрических потерь изоляции, следует произвести испытание масла по п. 12 табл. 1.8.38.

У маслонаполненных каскадных измерительных трансформаторов оценка состояния масла в отдельных ступенях производится по нормам, соответствующим номинальному рабочему напряжению ступени (каскада).

10 . Испытание емкостных трансформаторов напряжения типа НДЕ. Производ ится согласно инструкции завода-изготовителя.

11 . Испытание вентильных разрядников трансформаторов напряжения типа НДЕ. Производится в соответствии с 1.8.28 .

МАСЛЯНЫЕ ВЫКЛЮЧАТЕЛИ

1.8.18 . Масляные выключатели всех классов напряжения испытываются в объеме, предусмотренном настоящим параграфом.

1 . Измерение сопротивления изоляции:

а) подвижных и направляющих частей, выполненных из органических материалов. Производится мегаомметром на напряжение 2,5 кВ.

Сопротивление изоляции не должно быть менее значений, приведенных ниже:

Номинальное напряжение

выключателя, кВ ...................................... 3-10             15-150        220-500

Сопротивление изоляции, МОм ........... 1000            3000            5000

б) вторичных цепей, электромагнитов включения и отключения и т.п. производится в соответствии с 1.8.34.

2 . Испытание вводов. Производится в соответствии с 1.8.31 .

3 . Оценка состояния внутрибаковой изоляции и изоляции дугогасительных устройств. Производится для выключателей 35 кВ с установленными вводами путем измерения тангенса угла диэлектрических потерь изоляции. Внутрибаковая изоляция подлежит сушке, если измеренное значение тангенса в 2 раза превышает тангенс угла диэлектрических потерь вводов, измеренный при полном исключении влияния внутрибаковой изоляции дугогасительных устройств, т. е. до установки вводов в выключатель.

Таблица 1.8.15. Испытательное напряжение промышленной частоты для внешней изоляции аппаратов

Класс напряжения, кВ

Испытательное напряжение, кВ, для аппаратов с изоляцией

нормальной керамической

нормальной из органических материалов

облегченной керамической

облегченной из органических материалов

3

24

21,6

13

11,7

6

32

28,8

21

18,9

10

42

37,8

32

28,8

15

55

49,5

48

43,2

20

65

58,5

-

-

35

95

85,5

-

-

4 . Испытание изоляции повышенным напряжением промышленной частоты:

а) изоляции выключателей относительно корпуса или опорной изоляции. Производится для выключателей напряжением до 35 кВ. Испытательное напряжение для выключателей принимается в соответствии с данными табл. 1.8.15. Продолжительность приложения нормированного испытательного напряжения 1 мин;

б) изоляции вторичных цепей и обмоток электромагнитов включения и отключения. Значение испытательного напряжения 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

5 . Измерение сопротивления постоянному току:

а) контактов масляных выключателей. Измеряется сопротивление токоведущей системы полюса выключателя и отдельных его элементов. Значение сопротивления контактов постоянному току должно соответствовать данным завода-изготовителя;

б) шунтирующих резисторов дугогасительных устройств. Измеренное значение сопротивления должно отличаться от заводских данных не более чем на 3 %.

в) обмоток электромагнитов включения и отключения, значение сопротивлений обмоток должно соответствовать данным заводов-изготовителей.

6 . Измерение скоростных и временных характеристик выключателей. Измерение временных характеристик производится для выключателей всех классов напряжения. Измерение скорости включения и отключения следует производить для выключателей 35 кВ и выше, а также независимо от класса напряжения в тех случаях, когда это требуется инструкцией завода-изготовителя. Измеренные характеристики должны соответствовать данным заводов-изготовителей.

7 . Измерение хода подвижных частей (траверс) выключателя, вжима контактов при включении, одновременности замыкания и размыкания контактов. Полученные значения должны соответствовать данным заводов-и зготовителей.

8 . Проверка регул ировочных и установочных характеристик механизмов, приводов и выключателей. Производится в объеме и по нормам инструкций заводов-изготовителей и паспортов для каждого типа привода и выключателя.

9 . Проверка действия механизма свободного рас цепле ния. Производится на участке хода подвижных контактов при выключении - от момента замыкания первичной цепи выключателя (с учетом промежутка между его контактами, пробиваемого при сближении последних) до полного включения положения. При этом должны учитываться специфические требования, обусловленные конструкцией привода и определяющие необходимость проверки действия механиз ма свободного расцепления при поднятом до упора сердечнике электромагнита включения или при незаведенных пружинах (грузе) и т.д.

10 . Проверка напряже ния (давления) срабатыва ния пр иводов выключателей. Производится (без тока в первичной цепи выключателя) с целью определения фактических замечаний напряжения на зажимах электромагнитов приводов или давления сжатого воздуха пневмоприводов, при которых выключатели сохраняют работоспособность, т. е. выполняют операции включения и отключения от начала до конца. При этом временные и скоростные характеристи ки могут не соответствовать нормируемым значениям.

Напряжение срабатывания должно быть на 15 - 20 % меньше нижнего предела рабочего напряжения на зажимах электромагнитов приводов, а давление срабатывания пневмоприводов - на 20 - 30 % меньше нижнего предела рабочего давления. Работоспособность выключателя с пружинным приводом необходимо проверить при уменьшенном натяге включающих пружин согласно указаниям инструкций заводов-изготовителей.

Масляные выключатели должны обеспечивать надежную работу при следующих значениях напряжения на зажимах электромагнитов приводов: при отключении 65 - 120 %, номинального; при включении выключателей 80 - 110 %, номинального (с номинальным током включения до 50 кА) и 85 - 110 % номинального (с номинальным током включения более 50 кА). Для выключателей с пневмоприводами диапазон изменения рабочего давления должен быть не менее 90 - 110 % номинального. При указанных значениях нижних пределов рабочего напряжения (давления) приводов выключатели (без тока в первичной цепи) должны обеспечивать нормируемые заводами-изготовителями для соответствующих условий временные и скоростные характеристики.

11 . Испытание выключателя многократными включениями и отключениями. Многократные опробования масляных выключателей производятся при напряжении на зажимах электромагнитов: включения 110, 100, 80 (85) % номинального и минимальном напряжении срабатывания; отключения 120, 100, 65 % номинального и минимальном напряжении срабатывания.

Количество операций при пониженном и повышенном напряжениях должно быть 3 - 5, а при номинальном напряжении - 10.

Кроме того, выключатели следует подвергнуть 3-5-кратному опробованию в цикле В - О (без выдержки времени), а выключатели, предназначенные для работы в режиме АПВ, также 2-3-кратному опробованию в циклах О-В и О-В-О. Работа выключателя в сложных циклах должна проверяться при номинальном и пониженном до 80 % (85 %) номинального напряжения на зажимах электромагнитов приводов.

12 . Испытание трансформаторного масла выключателей. У баковых выключателей всех классов напряжений и малообъемных выключателей 110 кВ и выше испытание масла производится до и после заливки масла в выключатели.

У малообъемных выключателей до 35 кВ масло испытывается до заливки в дугогасительные камеры. Испытание масла производится в соответствии с 1.8.33.

13 . Испытание встроенных трансформаторо в тока. Производится в соответствии с 1.8.17 .

ВОЗДУШНЫЕ ВЫКЛЮЧАТЕЛИ

1.8.19 . Воздушные выключатели всех классов напряжения испытываются в объеме, предусмотренном настоящим параграфом.

Таблица 1.8.16. Наименьшее допустимое сопротивление опорной изоляции и изоляции подвижных частей воздушных выключателей

Испытуемый объект

Сопротивление изоляции, МОм, при номинальном напряжении выключателя, кВ

До 15

20 - 35

110 и выше

Опорный изолятор, воздухопровод и тяга (каждое в отдельности), изготовленные из фарфора

1000

5000

5000

Тяга, изготовленная из органических материалов

-

3000

-

1 . Измерение сопротивления изоляции:

а) опорных изоляторов, изоляторов гасительных камер и отделителей и изолирующих тяг выключателей всех классов напряжений. Производится мегаомметром на напряжение 2,5 кВ или от источника напряжения выпрямленного тока.

В случае необходимости измерение сопротивления изоляции опорных изоляторов, изоляторов гасительных камер и отделителей следует производить с установкой охранных колец на внешней поверхности.

Сопротивление изоляции должно быть не ниже значений, приведенных в табл. 1.8.16;

б) вторичных цепей, обмоток электромагнитов включения и отключения. Производится в соответствии с 1.8.34.

2 . Испытание повышенным напряжением промышленной частоты:

а) изоляции выключателей. Обязательно для выключателей до 35 кВ.

Опорную цельнофарфоровую изоляцию выключателей следует испытывать повышенным напряжением промышленной частоты в соответствии с табл. 1.8.17. Продолжительность приложения нормированного испытательного напряжения 1 мин.

Изоляция выключателей, состоящая из многоэлементных изоляторов, испытывается в соответствии с 1.8.32;

б) изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34.

3 . Измерение сопротивления постоянному току:

а) контактов воздушных выключателей всех классов напряжения. Измерению подлежит сопротивление контактов каждого элемента гасительной камеры, отделителя, ножа и т.п. в отдельности. Наибольшие допустимые значения сопротивления контактов воздушных выключателей приведены в табл. 1.8.17.

б) обмоток электромагнитов включения и отключения выключателей. Устанавливается для каждого типа выключателей согласно табл. 1.8.18 или данным завода-изготовителя.

в) делителей напряжения и шунтирующих резисторов выключателя. Для них нормы устанавливаются по данным завода-изготовителя.

Таблица 1.8.17. Наибольшее допуст и мое сопротивление постоянному току контактов воздушных выключателей на номинальный ток 2 кА

Тип выключателя

Номинальное напряжение, кВ

Сопротивление контактов, мкОм

вс его контура полюса

гасительной камеры

одного элемента гасительной камеры

ножа (отделител я)

одного элемента отделителя

ВВН-110-6

110

120

40

20

40

20

ВВН-154-8

150

160

60

20

60

20

ВВН-220-10

220

200

80

20

80

20

ВВ-500-2000/25

500

500*

-

18

-

18

ВВН-35-2

35

60

-

-

-

-

_____________

* Для выключателей с воздухонаполненным отделителем производятся измерения переходных сопротивлений контактного соединения:

шины, соединяющей гасительную камеру с отделителем (не должно превышать 50 мкОм);

шины, соединяющей две половины отделителя (не должно превышать 80 мкОм);

перехода с аппаратного вывода отделителя на шину, соединяющую фланцы отделителей (не должно превышать 10 мкОм).

Таблица 1.8.18. Сопротивление постоянному току обмоток электромагнитов воздушных выключателей

Тип выключателя

Соединение электромагнитов трех фаз

Напряжение, В

Сопротивление обмотки, Ом

ВВН-110-6, ВВН-

Разделительное или параллельное (электромагниты с форсировкой)

220

1-я обмотка: 10 ± 1,5;

154-8, ВВН-220-10, ВВ-330Б, ВВ-500, ВВМ-500М

2-я обмотка: 45 ± 2,0; обе обмотки: 55 ± 3,5

110

1-я обмотка: 2,4 ± 0,05;

2-я обмотка: 11,3 ± 0,55;

обе обмотки: 13,7 ± 0,55

4 . Проверка характеристик выключателя. Характеристики выключателя, снятые при номинальном, минимальном и максимальном рабочих давлениях при простых операциях сложных циклах, должны соответствовать данным завода-изготовителя.

5 . Проверка срабатывания привода выключателя при пониженном напряжении. Напряжение срабатывания электромагнитов управления при максимальном давлении воздуха в баках 2,06 МПа (21,0 кгс/см2) должно быть не более 65 % номинального.

6 . Испытание выключателя многократным включением и отключением. Количество операций и сложных циклов, выполняемых каждым выключателем, устанавливается согласно табл. 1.8.19 .

Таблица 1.8.19. Количество операций при испытаниях воздушных выключателей многократными опробованиями

На и менование операций или цикла

Давление опробования выключателя

Количество выполняемых операций и циклов

Включение и отключение

Минимальное давление срабатывания

3

Минимальное рабочее давление

3

Номинальное

3

Максимальное рабочее

2

Цикл В - О

Минимальное срабатывания

2

Минимальное рабочее*

2

Максимальное рабочее*

2

Цикл О - В (АПВ успешное)

Минимальное для АПВ

2

Номинальное*

2

Цикл О - В - О (АПВ неуспешное)

Минимальное для АПВ

2

Максимальное рабочее

2

_____________

* Должны сниматься осциллограммы работы выключателей.

7 . Испытание конденсаторов делителей напряжения воздушных выключателей. Производится в соответствии с 1.8.27 .

8 . Проверки хода якоря электромагнита управления. Ход якоря электромагнитов с форсировкой должен быть равен 8(-1) мм.

ВЫКЛЮЧАТЕЛИ НАГРУЗКИ

1.8.20 . Полностью собранный и отрегулированный выключатель нагрузки испытывается в объеме, предусмотренном настоящим параграфом.

1 . Измерение сопротивления изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34 .

2 . Испытание повышенным напряжением промышленной частоты:

а) изоляции выключателя нагрузки. Производится в соответствии с табл. 1.8.15;

б) изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34.

3 . Измерение сопротивления постоянному току:

а) контактов выключателя. Производится измерение сопротивле ния токоведущей системы полюса и каждой пары рабочих контактов. Значение сопротивления должно соответствовать данным завода-изготовителя;

б) обмоток электромагнитов управления. Значение сопротивления должно соответствовать данным завода-изготовителя:

4 . Проверка действия механизма свободного расцепления. Механизм свободного расцепления проверяется в работе в соответствии с 1.8.18 , п. 9.

5 . Проверка срабатывания привода при пониженном напряжении. Производится в соответствии с 1.8.18 , п. 10.

6 . Испытание выключателя нагрузки многократным опробованием. Производится в соответствии с 1.8.18 . п. 11.

7 . Испытание предохранителей. Производится в соответствии с 1.8.30 .

РАЗЪЕДИНИТЕЛИ, ОТДЕЛИТЕЛИ И КОРОТКОЗАМЫКАТЕЛИ

1.8.21 . Полностью собранные и отрегулированные разъединители, отделители и короткозамыкатели всех классов напряжений испытываются в объеме, предусмотренном настоящим параграфом.

1 . Измерение сопротивления изоляции:

а) поводков и тяг, выполненных из органических материалов. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции должно быть не ниже значений, приведенных в 1.8.18, п. 1, а.

б) многоэлементных изоляторов. Производится в соответствии с 1.8.32.

в) вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34.

2 . Испытание повышенным напряжением промышленной частоты:

а) изоляции разъединителей, отделителей и короткозамыкателей. Производится в соответствии с табл. 1.8.15;

б) изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.34.

3 . Измерение сопротивления постоянному току:

а) контактной системы разъединителей и отделителей напряжением 110 кВ и выше. Измеренные значения должны соответствовать данным заводов-изготовителей или приведенным в табл. 1.8.20.

б) обмоток электромагнитов управления. Значения сопротивления обмоток должны соответствовать данным заводов-изготовителей.

Таблица 1.8.20. Наибольшее допустимое сопротивле ние постоянному току контактной системы разъединителей и отделителей

Тип разъединителя (отделителя)

Номинальное напряжение, кВ

Номинальный ток, А

Сопротивление, мкОм

РОНЗ

400-500

2000

200

РЛН

110-220

600

220

Остальные типы

110-500

600

175

1000

120

1500-2000

50

Таблица 1.8.21. Нормы вытягивающих усилий подвижных контактов из неподвижных (для одного ножа) для разъединителей и отделителей

Тип аппарата

Номинальный ток, А

Усилие, Н (кгс)

Разъединители

РВК-10

3000; 4000; 5000

490-540 (50-55)

РВК-20

5000; 6000

490-540 (50-55)

7000

830-850 (85-87)

РВ(3)-20

400

118-157 (12-16)

РВ(3)-35

600

137-176 (14-18)

1000

176-225 (18-23)

Р ЛНД-110

600

157-176 (16-18)

1000

176-196 (18-20)

Отделители

ОД-110 М; ОД-150М

600

157-176 (16-18)

ОД-220М

1000

176-196 (18-20)

Таблица 1.8.22. Наибольшее допустимое время отключения отделителей и включения короткозамыкателей

Тип аппарата

Время отключения, не более, с

Тип аппарата

Время включения, не более, с

Отделители

Короткозамыкатели

ОД-35

0,5

КЗ-35

0,4

ОД-110

0,7-0,9

КЗ-110

0,4

ОД-110М

0,5

КЗ-110М

0,35

ОД-150

1,0

КЗ-220, КЗ-150

0,5

ОД-150М

0,7

КЗ-150М

0,4

ОД-220

1,0

КЗ-220М

0,4

ОД-220М

0,7

4 . Измерение вытягивающих усилий подвижных контактов из неподвижных. Производится у разъединителей и отделителей 35 кВ, а в электроустановках энергосистем - независимо от класса напряжения. Измерение значения вытягивающих усилий при обезжиренном состоянии контактных поверхностей должны соответствовать данным завода-изготовителя, а при их отсутствии - данным, приведенным в табл. 1.8.21 .

Кроме указанных в табл. 1.8.21 норм для разъединителей наружной установки 35 - 220 кВ на номинальные токи 630 - 2000 А заводом-изготовителем установлена общая норма вытягивающего усилия на пару ламелей 78,5 - 98 Н (8-10 кгс).

5 . Проверка работы. Проверку аппаратов с ручным управлением следует производить путем выполнения 10 - 15 операций включения и отключения. Проверка аппаратов с дистанционным управлением производится путем выполнения 25 циклов включения и отключения при номинальном напряжении управления и 5 - 10 циклов включения и отключения при пониженном до 80 % номинального напряжения на зажимах электромагнитов (электродвигателей) включения и отключения.

6 . Определение временных характеристик. Производится у короткозамыкателей при включении и у отделителей при отключении. Измеренные значения должны соответствовать данным завода-изготовителя, а при их отсутствии - данным, приведенным в табл. 1.8.22 .

КОМПЛЕКТНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА ВНУТРЕННЕЙ И НАРУЖНОЙ УСТАНОВКИ (КРУ И КРУН)

1.8.22 . Комплектные распределительные устройства после монтажа на месте установки испытываются в объеме, предусмотренном настоящим параграфом.

Нормы испытаний элементов КРУ: масляных выключателей, измерительных трансформаторов, выключателей нагрузки, вентильных разрядников, предохранителей, разъединителей, силовых трансформаторов и трансформаторного масла - приведены в соответствующих параграфах настоящей главы.

1 . Измерение сопротивления изоляции:

а) первичных целей. Производится мегаомметром на напряжение 2,5 кВ.

Сопротивление изоляции полностью собранных первичных цепей КРУ с установленными в них узлами и деталями, которые могут оказать влияние на результаты испытаний, должно быть не менее 1000 МОм.

При неудовлетворительных результатах испытаний измерение сопротивления производится поэлементно, при этом сопротивление изоляции каждого элемента должно быть не менее 1000 МОм;

б) вторичных цепей. Производится мегаомметром на напряжение 0,5 - 1 кВ. Сопротивление изоляции каждого присоединения вторичных цепей со всеми присоединенными аппаратами (реле, приборами, вторичными обмотками трансформаторов тока и напряжения и т.п.) должно быть не менее 1 МОм.

2 . Испытание повышенным н апряжением промышленной частоты:

а) изоляции первичных цепей ячеек КРУ и КРУН. Испытательное напряжение полностью смонтированных ячеек КРУ и КРУН при вкаченных в рабочее положение тележках и закрытых дверях указано в табл. 1.8.23.

Продолжительность приложения нормированного испытательного напряжения для ячеек с керамической изоляцией 1 мин; для ячеек с изоляцией из твердых органических материалов 5 мин;

б) изоляции вторичных цепей. Производится напряжением 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

Таблица 1.8.23. Испытательное напряжение промышленной частоты изоля ции ячеек КРУ и КРУН

Класс напряжения, кВ

Испытательное напряжение, кВ, ячейки с изоляцией

Класс напряжения, кВ

Испытательное напряжение, кВ, ячейки с изоляцией

керамической

из твердых органических материалов

керамической

из твердых органических материалов

3

24

21,6

15

55

49,5

6

32

28,8

20

65

58,5

10

42

37,8

35

95

85,5

Таблица 1.8.24. Наибольшее допустимое сопротивление постоянному току контактов КРУ и КРУН

Измеряемый объект

Сопротивление, Ом

Соединения сборных шин (выборочно)

Не должно превышать более чем в 1,2 раза сопротивление участка шин той же длины без соединения

Разъемные соединения первичной цепи (выборочно, если позволяет конструкция КРУ)

Определяется заводскими инструкциями. Для КРУ, у которых инструкции не нормируют сопротивление, их сопротивление должно быть не более, мкОм:

для контактов 400 А - 75

»             600 А - 60

»             900 А - 50

»             1200 А - 40

Разъединяющие контакты вторичной силовой цепи (выборочно, только для контактов скользящего типа)

Сопротивление контактов должно быть не более 4000 мкОм

3 . Измерение сопротивления постоянному току. Сопротивление разъемных и болтовых соединений постоянному току должно быть не более значений, приведенных в табл. 1.8.24 .

4 . Механические испытания. Производятся в соответствии с инструкциями завода-изготовителя. К механическим испытаниям относятся:

а) вкатывание и выкатывание выдвижных элементов с проверкой взаимного вхождения разъединяющих контактов, а также работы шторок, блокировок, фиксаторов и т.п.;

б) измерение контактного нажатия разъемных контактов первичной цепи;

в) проверка работы и состояния контактов заземляющего разъединителя.

КОМПЛЕКТНЫЕ ЭКРАНИРОВАННЫЕ ТОКОПРОВОДЫ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ И ШИНОПРОВОДЫ

1.8.23 . Объем и нормы испытаний оборудования, присоединенного к токопроводу и шинопроводу (генератор, силовые и измерительные трансформаторы и т.п.) приведены в соответствующих параграфах настоящей главы.

Полностью смонтированные токопроводы испытываются в объеме, предусмотренном настоящим параграфом.

1 . Испытание повышенным напряжением промышленной частоты. Испытательное напряжение изоляции токопровода при отсоединенных обмотках генератора, силовых трансформаторов и трансформаторов напряжения устанавливается согласно табл. 1.8.25 .

Таблица 1.8.25. Испытательное напряжение промышленной частоты для изоляции токопровода

Класс напряжения, кВ

Испытательное напряжение, кВ, токопровода с изоляцией

фарфоровой

сме шанной (керамической и из твердых органических материалов)

6

32

28,8

10

42

37,8

15

55

49,5

20

65

58,5

Длительность приложения нормированного испытательного напряжения к токопроводу с чисто фарфоровой изоляцией 1 мин. Если изоляция токопровода содержит элементы из твердых органических материалов, продолжительность приложения испытательного напряжения 5 мин.

2 . Проверка качества выполнения болтовых и сварных соединений. Выборочно проверяется затяжка болтовых соединений токопровода.

Если монтаж токопровода осуществлялся в отсутствие заказчика производится выборочная разборка 1 - 2 болтовых соединений токопровода с целью проверки качества выполнения контактных соединений.

Сварные соединения подвергаются осмотру в соответствии с инструкцией по сварке алюминия или при наличии соответствующей установки - контролю методом рентгено- или гаммадефектоскопии или другим рекомендованным заводом-изготовителем способом.

3 . Проверка состояния изоляционных прокладок. Производится у токопроводов, кожухи которых изолированы от опорных металлоконструкций. Проверка целости изоляционных прокладок осуществляется путем сравнительных измерений падения напряжения на изоляцио нных прокладках секции фазы или измерения тока, проходящего в металлоконструкциях между станинами секций.

4 . Осмотр и проверка устройства искусственного охлаждение токопровода. Производится согласно инструкции завода-изготовителя.

СБОРНЫЕ И СОЕДИНИТЕЛЬНЫЕ ШИНЫ

1.8.24 . Шины испытываются в объеме, предусмотренном настоящим параграфом: на напряжение до 1 кВ - по пп. 1, 3 - 5; на напряжение выше 1 кВ - по пп. 2 - 6.

1 . Измерение сопротивления изоляции. Производится мегаомметром на напряжение 1 кВ. Сопротивление изоляции должно быть не менее 0,5 МОм.

2 . Испытание изоляц ии повышенным напряжен ием промышленной частоты:

а) опорных одноэлементных изоляторов. Керамические одноэлементные опорные изоляторы внутренней и наружной установок испытываются в соответствии с 1.8.32;

б) опорных многоэлементных и подвесных изоляторов. Штыревые и подвесные изоляторы испытываются согласно 1.8.32, п. 2, б.

3 . Проверка качества выполнения болтовых контактных соединений шин. Производится выборочная проверка качества затяжки контактов и вскрытие 2 - 3 % соединений. Измерение переходного сопротивления контактных соединений следует производить выборочно у сборных и соединительных шин на 1000 А и более на 2 - 3 % соединений. Падение напряжения или сопротивление на участке шины (0,7 - 0,8 м) в месте контактного соединения не должно превышать падения напряжения или сопротивления участка шин той же длины и того же сечения более чем в 1,2 раза.

4 . Проверка качества выполнения опрессованных контактных соединений шин. Опрессованные контактные соединения бракуются, если:

а) их геометрические размеры (длина и диаметр спрессованной части) не соответствуют требованиям инструкции по монтажу соединительных зажимов данного типа;

б) на поверхности соединителя или зажима имеются трещины, следы значительной коррозии и механических повреждений;

в) кривизна спрессованного соединителя превышает 3 % его длины;

г) стальной сердечник спрессованного соединителя расположен несимметрично.

Следует произвести выборочное измерение переходного сопротивления 3 - 5 % опрессованных контактных соединений.

Падение напряжения или сопротивление на участке соединения не должно превышать падения напряжения или сопротивления на участке провода той же длины более чем в 1,2 раза.

5 . Контроль сварных контактных соединений. Сварные контактные соединения бракуются, если непосредственно после выполнения сварки будут обнаружены:

а) пережог провода наружного навива или нарушение сварки при перегибе соединенных проводов;

б) усадочная раковина в месте сварки глубиной более 1/3 диаметра провода.

6 . Испытание проходных изоляторов. Производится в соответствии с 1.8.31 .

СУХИЕ ТОКООГРАНИЧИВАЮЩИЕ РЕАКТОРЫ

1.8.25 . Сухие токоограничивающие реакторы должны быть испытаны в объеме, предусмотренном настоящим параграфом.

1 . Измер ение сопротивления изоляции обмоток относительно болтов крепления. Производится мегаомметром на напряжение 1 - 2,5 кВ. Сопро тивление изоляции должно быть не менее 0,5 МОм.

2 . Испытание фарфоро вой опорной изоляции реакторов повышенным напряжением промышленной частоты. Испытательное напряжение опорной изоляции полностью собранного реактора устанавливается согласно табл. 1.8.26 .

Таблица 1.8.26. Испытательное напряжение промышленной частоты фарфоровой опорной изоляции сухих токоограничивающих реакторов и предохранителей

Класс напряжения реактора, кВ

3

6

10

15

20

35

Испытательное напряжение, кВ

24

32

42

55

65

95

Продолжительность приложения нормированного испытательного напряжения 1 мин.

Испытание опорной изоляц ии сухих реакторов повышенным напряжением промышленной частоты может производиться совместно с изоляторами ошиновки ячейки.

СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ПРОМЫШЛЕННЫХ ЦЕЛЕЙ

1.8.26 . Комплектные статические преобразователи испытываются в объеме, предусмотренном настоящим параграфом: ионные нереверсивные - по пп. 1 - 8, 10, 11; ионные реверсивные - по пп. 1 - 11; полупроводниковые управляемые нереверсивные - по пп. 1 - 4, 6 - 8, 10, 11; полупроводниковые управляемые реверсивные - по пп. 1 - 4, 6 - 11; полупроводниковые неуправляемые - по пп. 1 - 4, 7, 10, 11.

Настоящий параграф не распространяется на тиристорные возбудители синхронных генераторов и компенсаторов.

1 . Измерение сопротивления изоляции элементов и цепей преобразователя. Следует производить в соответствии с инструкцией завода-изготовителя.

2 . Испытание повышенным напряжением промышленной частоты:

а) изоляция узлов и цепей ионного преобразователя и преобразовательного трансформатора должна выдержать в течение 1 мин испытательное напряжение промышленной частоты. Значения испытательного напряжения приведены в табл. 1.8.27, где Ud - напряжение холостого хода преобразовательного агрегата.

Испытательные напряжения между катодом и корпусом вентиля относятся к преобразователям с изолированным катодом.

Таблица 1.8.27. Испытательное напряжение промышленной частоты для элементов и цепей статических преобразователей

Испытуемые узлы к цепи преобра з ователя

Узлы, по отношению к которым испытывают изоляцию

Испытательное напряжение, В, для схем

нулевых

мостовых

Преобразователи

Цепи, связанные с анодами

Заземленные детали

2,25 Ud + 3750

1,025 Ud + 3750

Катоды и корпуса вентилей и цепи, связанные с катодами, расположенными в шкафах

То же

1,5 Ud + 750

1,025 Ud + 3750

Рамы

 » »

-

1,5 Ud + 750

Вторичные обмотки

Первичные обмотки

1,5 Ud + 750

1,025 Ud + 3750

вспомогательных трансформаторов и цепи, связанные с ними

вспомогательных трансформаторов и цепи, связанные с ними, а также заземленные детали

(но не менее 2250 В)

Преобразовательные трансформаторы

Вентильные обмотки и их выводы

Корпус и другие обмотки

2,25 Ud + 3750

1,025 Ud + 3750

Уравнительные реакторы (обмотки и выводы) и вторичные обмотки утро ителей частоты

Корпус

2,25 Ud + 3750

-

Ветви уравнительного реактора

Один по отношению к другому

1,025 Ud + 750

-

Анодн ые делители (обмотки и выводы)

Корпус или заземленные детали

2,25 Ud + 3750

1,025 Ud + 3750

Для встречно-параллельных схем преобразователей для электропривода и преобразователей с последовательным соединением вентилей в каждой фазе катоды и корпуса вентилей, а также цепи, связанные с катодами, должны испытываться напряжением 2,25 Ud + 3500;

б) изоляция узлов и цепей полупроводникового преобразователя (силовые цепи - корпус и силовые цепи - цепи собственных нужд) должна выдержать в течение 1 мин испытательное напряжение промышленной частоты, равное 1,8 кВ или указанное заводом-изготовителем.

Силовые цепи переменного и выпрямленного напряжения на время испытания должны быть электрически соединены между собой.

3 . Проверка всех видов защит преобразователя. Пределы срабатывания защит должны соответствовать расчетным проектным данным.

4 . Испытание преобразовательного трансформатора и реакторов. Производится в соответствии с 1.8.16 .

5 . Проверка заж ига ния. Зажигание должно происходить четко, без длительной пульсации системы зажигания.

6 . Проверка фазировки. Фаза импульсов управления должна соответствовать фазе анодного напряжения в диапазоне регулирования.

7 . Проверка системы охлаждения. Разность температур воды на входе и выходе системы охлаждения ртутного преобразователя должна соответствовать данным завода-изготовителя.

Скорость охлаждающего воздуха полупроводникового преобразователя с принудительным воздушным охлаждением должна соответствовать данным завода-изготовителя.

8 . Проверка д иапазона регулирован ия выпрямленного напряжения. Диапазон регулирования должен соответствовать данным завода-изготовителя, изменение значения выпрямлен ного напряжения должно происходить плавно. Снятие регулировочной характеристики производится при работе преобразователя на нагрузку не менее 0,1 номинальной. Характеристики нагрузки, применяемой при испытаниях, должны соответствовать характеристикам нагрузки, для которой предусмотрен преобразователь.

9 . Измер ение статического уравнительного тока. Измерение следует производить во всем диапазоне регулирования. Уравнительный ток не должен превосходить предусмотренного проектом.

10 . Проверка работы преобра зователя под нагрузкой (для регул ируемых преобразователей во всем диапазоне регулирования). При этом производится проверка равномерности распределения токов по фазам и вентилям. Неравномерность не должна приводить к перегрузкам какой-либо фазы или вентиля преобразователя.

11 . Проверка параллельной работы пре образователей. Должно иметь место устойчивое распределение нагрузки в соответствии с параметрами параллельно работающих выпрямительных агрегатов.

БУМАЖНО-МАСЛЯНЫЕ КОНДЕНСАТОРЫ

1.8.27 . Бумажно-масляные конденсаторы связи, отб ора мощности, делительные конденсаторы, конденсаторы продольной компенсации и конденсаторы для повышения коэффициента мощности испытываются в объеме, предусмотренном настоящим параграфом; конденсаторы для повышения коэффициента мощности напряжением ниже 1 кВ - по пп. 1, 4, 5; конденсаторы для повышения коэффициента мощности напряжением 1 кВ и выше - по пп. 1, 2, 4, 5; конденсаторы связи, отбора мощности и делительные конденсаторы - по пп. 1 - 4.

Табли ц а 1.8.28 . Н аибольшее допустимое отклонение емкост и конденсаторов

Наименование или тип конденсатора

Допустимо е отклонение, %

Конденсаторы для повышения коэффициента мощности напряжением:

до 1050 В

± 10

выше 1050 В

+10

- 5

Конденсаторы типов:

С МР-66 / , СМР-110 /

+10

- 5

С МР-166 / , СМР-13 3 / , О МР-15

± 5

Д МР- 80, ДМРУ- 80, Д МРУ-6 0, Д МРУ-55, ДМРУ-110

± 10

Таблица 1.8.29. Испытательное напряжение промышлен н ой частоты ко нденсаторов для повышения коэффицие нта мощности

Испытуема я и золяц ия

Испытательное напряжение, кВ, для конденсаторов с рабочим напряжением, кВ

0,22

0,38

0,50

0,66

3,15

6,30

10,5 0

Между обкладками

0,42

0,72

0,95

1,25

5,9

11,8

20

Относительно корпуса

2,1

2,1

2,1

5,1

5,1

15,3

21,3

Таблица 1.8.30. Испытатель н ое напряжение промышлен ной частоты для конде нсаторов связи, отбора мощности и делительных конденсаторов

Тип конд е нсатора

Испытат ельное напряже ние элементов конденсатора, к В

СМР-66 /

90

СМР-110 /

193,5

СМР-166 /

235,8

ОМР-15

49,5

ДМР-80, ДМРУ-80, ДМРУ-60, ДМРУ-55

144

ДМРУ-110

252

1 . Измерение сопрот ивления изоляц ии. Прои зводится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции между выводами и относительно корпуса конденсатора и отношен ие R 60 / R 15 не нормируются.

2 . Измерение емкост и. Производится при температуре 15 - 3 5 ° С. Измер енная емкость должна соответствовать паспортным данным с учетом погрешности измерения и приведенных в табл. 1.8.28 . допусков.

Таблица 1.8.31. Испытат е льное напряжение для ко нде нсаторов продольной компенсаци и

Тип конденсатора

Испы тательное напряжение, кВ

про мышленной частоты относительно корпуса

постоянного ток а между обкладками конденсатора

КПМ-0,6 -50-1

16,2

4,2

К ПМ-0,6-25-1

16,2

4,2

КМП-1-50-1

16,2

7,0

КМП-1-50-1-1

-

7,0

3 . Измерение тангенса угла диэлектрических потерь. Производится для конденсаторов связи, конденсаторов отбора мощности и делите льных конденсаторов. Измеренные значения тангенса угла диэлектрических потерь для конденсаторов всех типов при температуре 15 - 35 ° С не должны превышать 0,4 %.

4 . Испытание повышенным напряжением. Испытательные напряжения кон денсаторов для повышения коэффициента мощности приведены в табл. 1.8.29 ; для конденс аторов связи, конденсаторов отбора мощности и делительных конденсаторов - в табл. 1.8.30 и кон денсаторов продольной компенсации - в табл. 1.8.31 .

Продолжительность приложения испытательного напряжения 1 мин.

При отсутствии источника тока достаточной мощности испытания повышен ным напряжением промышленной частоты могут быть замен ены испытан ием выпрямленным напряжением удвоенного значения по отношению к указанному в табл. 1.8.29 - 1.8.31.

Испытание повышенным напряжением промышленной частоты относительно корпу са изоляции конденсаторов, предназначенных для повышения коэффициента мощности (или конденсаторов продольной компенсации) и имеющих вывод, соединен ный с корпусом, не производится.

5 . Испытание батареи конде нсаторов трехкратным включе нием. Производится включением на номинальное напряжение с контролем значений токов по каждой фазе. Токи в различных фазах должны отличаться один от другого не более чем на 5 %.

ВЕНТИЛЬНЫЕ РАЗРЯДНИКИ

1.8.28 . Вентильные разрядники после установки на месте монтажа испытываются в объеме, предусмотренном настоящим параграфом.

1 . И змерение сопрот ивле ния элем ента разрядн ика. Производится мегаомметром на напряжение 2,5 кВ. Сопротивление изоляции элемента не нормируется. Для оценки изоляции сопоставляются изм еренные значения сопротивлений изоляции элементов одной и той же фазы разрядника; кроме того, эти значения сравниваются с сопротивлением изоляции элементов других фаз комплекта или данными завода-изготовителя.

Таблица 1.8.32. Ток проводимости (утечки) элеме н тов вентиль ных ра зряд ников

Тип разрядника или его элементов

Выпрямленное напряж ение , приложенное к элемен ту ра зрядника, кВ

Ток провод имости элемента ра зрядника, мкА

Верхний предел тока утечки, мкА

РВВМ-3

РВВМ-6

РВВМ-10

400 - 620

-

РВС-15

РВС-20

РВС-33, РВС-35

400 - 620

-

РВО-35

42

70 - 130

-

РВМ-3

4

380 - 450

-

РВМ-6

6

120 - 220

-

РВМ-10

10

200 - 280

-

РВМ-15

18

500 - 700

-

РВМ-20

24

500 - 700

-

РВП-3

4

-

10

РВП-6

6

-

10

РВП-10

10

-

10

Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220, РВМ Г-330, РВМГ-500

30

9 - 1300

-

Основ ной элемент разрядника се рии РВМК

18

900 - 1300

-

Искровой элемент разрядника серии РВМК

28

900 - 1300

-

Основной элемент разрядников РВМК-330П, РВМ К-500П

24

900 - 1300

-

Таблица 1.8.33. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте

Тип элемента

Пробивное напряжение, кВ

Элемент разрядников РВМГ-110, РВМГ-150, РВМГ-220

59-73

Элемент разрядников РВМГ-330, РВМГ-500

60-75

Основной элемент разрядников РВМК-330, РВМ К-50 0

40 -53

Искровой элеме нт разрядников РВМК-330, РВМК-500, РВМК-500П

70-85

Основной элемент разрядников РВМК-500П

43-54

2 . Измерение тока проводимости (тока утечк и). Допустимые токи проводимости (токи утечки) отдельных элементов вентильных разрядников приведены в табл. 1.8.32 .

3 . И змерение пробивных напряжений при промышленной частоте. Пробивное напряжение искровых промежутков элементов вентильных разрядников при промышленной частоте должно быть в пределах значений, указанных в табл. 1.8.33 .

Измерение пробив ных напряжений промышленной частоты разрядников с шунтирующими резисторами допускается производить на испытательной установке, позволяющей ограничивать ток через разрядник до 0,1 А и время приложения напряжения до 0,5 с.

ТРУБЧАТЫЕ РАЗРЯДНИКИ

1.8.29 . Трубчатые разрядники испытываются в объеме, предусмотренном настоящим параграфом.

1 . Проверка состояния пов ерхности разрядника. Производится путем осмотра перед установкой разрядника на опору. Наружная поверхность разрядника не должна иметь трещин и отслоений.

2 . Измерение внешнего искрового промежутка. Производится на опоре установки разрядника. Искровой промежуток не должен отличаться от заданного.

3 . Проверка расположения зон выхлопа. Производится после установки разрядников. Зоны выхлопа не должны пересекаться и охватывать элементы ко нструкций и проводов, имеющих потенциал, отличающийся от потенциала открытого конца разрядника.

ПРЕДОХРАНИТЕЛ И НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ

1.8.30 . Предохранители выше 1 кВ испытываются в объеме, предусмотренном настоящим параграфом.

1 . Испытание опорной изоляции предохранителей повышен ным напряже нием промышленной частоты. Испытательное напряжение устанавливается согласно табл. 1.8.26 .

Продолжительность приложения нормированного испытательного напряжения 1 мин. Испытание опорной изоляции предохранителей повышенным напряжением промышленной частоты может производиться совместно с испытанием изоляторов ошиновки ячейки.

2 . Проверка целости плавких вставок и токоограничивающих резисторов и соответствия их проектным данным. Плавкие вставки и токоограничивающие резисторы должны быть калиброванными и соответствовать проектным данным. У предохранителей с кварцевым песком дополнительно проверяется целость плавкой вставки.

ВВОДЫ И ПРОХОДНЫЕ ИЗОЛЯТОРЫ

1.8.31 . Вводы и проходные изоляторы испытываются в объеме, предусмотренном настоящим параграфом.

1 . Измерен ие сопротивления изоляц ии. Производится мегаомметром на напряжение 1 - 2 ,5 кВ у вводов с бумажно-масляной изоля цией. Измеряется сопротивление изоляции измерительной и пос ледней обкладок вводов относительно соединительной втулки. Сопротивление изоляции должно быть не менее 1000 МОм.

Таблица 1.8.34. Наибольший допустимый тангенс угла диэлектрических потерь основной изоляции и изоляции и змерительного конде нс атора вводов и проходных изоляторов пр и температуре + 20 °С

На и менование об ъек та испытания и вид основной и золяции

Тангенс угла диэлектрических потерь, %, при номинальном напряжении, кВ

3-15

20-35

60-110

150-2 20

330

500

Маслонаполненные вводы и проходные изоляторы с изоляцией:

маслобарьерной

-

3,0

2,0

2,0

1,0

1,0

бумажно-масляной *

-

-

1,0

0,8

0,7

0,5

Вводы и проходные изоляторы с бакелитовой изоляцией (в том числе маслонаполненные)

3,0

3,0

2,0

-

-

-

_____________

* У трехзажимных вводов помимо и змерения основной изоляции долж ен производиться и контроль изоляции о тводов от регулировочной обмо тк и. Та нгенс угла диэлектрических потерь изоляции отводов должен б ыть не бол ее 2,5 %.

2 . Измер ение тангенса угла диэлектрических потерь. Производится у вводов и проходных изоляторов с внутренней основной маслобарьерной, бумажно-масляной и бакелитовой изоляцией. Тангенс угла диэлектрических потерь вводов и проходных изоляторов не должен превышать значений, указанных в табл. 1.8.34 .

У вводов и проходных изоляторов, имеющих специальный вывод к потенциометрическому устройству (ПИН), производится измерение тангенса угла диэлектрических потерь основной изоляции и изоляции измерительного конденсатора. Одновременно производится и измерение емкости.

Браковочные нормы по тангенсу угла диэлектрических потерь для изоляции измерительного конденсатора те же, что и для основной изоля ции.

У вводов, имеющих измерительный вывод от обкладки последних слоев изоляции (для измерения угла диэлектрических потерь), рекомендуется измерять тангенс угла диэлектрических потерь этой изоляции.

Измерение тангенса угла диэлектрических потерь производится при напряжении 3 кВ.

Для оценки состояния последних слоев бумажно-масляной изоляции вводов и проходных изоляторов можно ориентироваться на средние опытные значения тангенса угла диэлектрических потерь: для вводов 110 - 115 кВ - 3 %; для вводов 220 кВ - 2 % и для вводов 330 - 500 кВ - предельные значения тангенса угла ди электрических потерь, принятые для основной изоляции.

Таблица 1.8.35. Испытатель н ое напряже ние промышленной частоты вводов и проходных и золяторов

Номинальное напряж е ние, кВ

Испытательное напряжени е, кВ

Керамические изоляторы, испытываемые о тдельно

Аппаратные вводы и проходные изоляторы с основной керамической или жидкой изоляцией

Аппара тные вводы и проходные изоляторы с основной б акелитовой и золяцией

3

25

24

21,6

6

32

32

28,8

10

42

42

37,8

15

57

55

49,5

20

68

65

58,5

35

100

95

85,5

3 . Испытание повышенным напряжением промыш ле нной частоты. Испытание является обязательным для вводов и проходных изоляторов на напряжен ии до 35 кВ.

Испытательное напряжение для проходных изоляторов и вводов, испытываемых отдельно или после установки в распределительном устройстве на масляный выключатель и т.п. , принимается согласно табл. 1.8.35.

Испытание вводов, ус та новленных на силовых трансформаторах, следует прои зводить совместно с испытанием обмоток последних по нормам, принятым для силовых трансформаторов (см. табл. 1.8.11).

Продолжительность приложения нормированного испытательного напряжения для вводов и проходных изоляторов с основной керамической, жидкой или бумажно-масляной изоляцией 1 мин, а с основной изоляцией из бакелита или других твердых орган ических материалов 5 мин. Продолжительность приложения нормированного испытательного напряжения для вводов, испытываемых совместно с обмотками трансформаторов, 1 мин.

Ввод считается выдержавшим испытание, если при этом не наблюдалось пробоя, перекрытия, скользящих разрядов и частичных разрядов в масле (у маслонаполненных вводов), выделений газа, а также, если после испытания не обнаружено местного перегрева изоляции.

4 . Проверка кач ества уплотне ния вводов. Производится для негерметичных маслонаполненных вводов напряжением 110 - 500 кВ с бу мажно-масляной изоляцией путем создания в них избыточного давления масла 98 кПа (1 кг/см2). Продолжительность испытания 30 мин. При испытании не должно наблюдаться признаков течи масла.

5 . Испытание трансформатор ного масла из маслонаполненных вводов. Для вновь заливаемых вводов масло должно испытываться в соответствии с 1.8.33 .

После монтажа производится испытание залитого масла по показателям пп. 1 - 6 табл. 1.8.38, а для вводов, имеющих повышенный тангенс угла диэлектрических потерь, и вводов напряжением 220 кВ и выше, кроме того, измерение тангенса угла диэлектрических потерь масла. Значения показателей должны быть не хуже приведенных в табл. 1.8.38, а значения тангенса угла диэлектрических потерь - не более приведенных в табл. 1.8.36.

Таблица 1.8.36. Н а ибольш ий допустимый та нгенс угла д иэлектр ическ их потерь масла в маслонаполненных вводах при температуре +70 °С

Конструкц и я ввода

Тангенс угла диэлектрических потерь, % для напряжения вводов, кВ

110 - 220

330 - 500

Масло марки Т-7 50

Масло прочих марок

Масло марки Т -750

Масло проч их марок

Маслобарьерный

-

7

-

7

Бумажно-масляный :

негерметичный

5

7

3

5

герметичный

5

7

3

5

ФАРФОРОВЫЕ ПОДВЕСНЫЕ И ОПОРНЫЕ ИЗОЛЯТОРЫ

1.8.32 . Фарфоровые подвесные и опорные изоляторы испытываются в объеме, предусмотренном настоящим параграфом.

Для опорно-стержневых изоляторов испытание повышенным напряжением промышленной частоты не обязательно.

Электрические испытания стеклянных подвесных изоляторов не производятся. Контроль их состояния осуществляется путем внешнего осмотра.

1 . Измере ние сопротивлен ия изоляции подвесных и многоэлементных изол яторов. Производится мегаомметром на напряжение 2,5 кВ только при положительных температурах окружаю щего воздуха. Проверку изоляторов следует производить непосредственно перед их установкой в распределительных устройствах и на линиях электропередачи. Сопротивле ние изоляции каждого подвесного изолятора или каждого элемента штыревого изолятора должно быть не менее 300 МОм.

2 . Испыта ние повышенным на пряжением промышленной частоты:

а) опорных одноэлементных изоляторов . Для этих изоляторов внутренней и наружной установок значения испытательного напряжения приводятся в табл. 1.8.37.

Продолжительность приложения нормированного испытательного напряжения 1 мин ;

б) опорных многоэлементных и подвесных изоляторов. В новь устанавливаемые штыревые и подвесные изоляторы следует испытывать напряжением 50 кВ, прикладываемым к каждому элементу изолятора .

Табли ц а 1.8.37 . Испытательное напряжение опорных од ноэлементных изоляторов

Испытуемые изоляторы

Испытательное напряжение, кВ, для номинального напряжения электроустановки, кВ

3

6

10

15

20

35

Изоляторы, испытуемы е отдельно

25

32

42

57

68

100

Изоляторы, установленные в цепях шин и аппаратов

24

32

42

55

65

95

Продолжительность приложения нормированного испытательного напряжения для изоляторов, у которых основной изоляцией являются твердые органические материалы, 5 мин, для керамических и золятор ов - 1 мин.

ТРАНСФОРМАТОРНОЕ МАСЛО

1.8.33 . Трансформаторное масло на месте монтажа оборудования испытывается в объеме, предусмотренном настоящим параграфом.

1 . Анализ масла перед заливкой в оборудование. Каждая партия свежего, поступившего с завода трансформаторного масла должна перед заливкой в оборудование подвергаться однократным испытаниям по показате лям, приведенным в табл. 1.8.38 , кроме п. 3. Значения показателей, полученные при испытаниях, должны быть не хуже приведенных в табл. 1.8.38 .

Масла, изготовленные по технич еским условиям, не у казанным в табл. 1.8.38, должны подв ергаться испытаниям по тем же по казателям, но нормы испыта ний следует принимать в соответствии с техническим и условиями на эти масла.

Таблица 1.8.38. Предель н ые допуст имые значения по казателе й качества трансформаторного масла

Показатель качества масла

Свежее сухое масло перед заливкой в оборудование

Масло непосредственно после заливки в оборудование

по ГОСТ 982-80 * марки ТКп

по ГОСТ 10121-76 *

по ТУ 38-1-182-68

по ТУ 38-1-239- 69

по ГОСТ 982-80 * марки ТКп

по ГОСТ 10121-76 *

по ТУ 38-1-182-68

по ТУ 38-1-239-69

1. Электрическая прочность масла, кВ, определяемая в стандартном сосуде, для трансформаторов и изоляторов напряжением:

до 15 кВ

30

30

30

-

25

25

25

-

выше 15 до 35 кВ

35

35

35

-

30

30

30

-

от 60 до 220 кВ

45

45

45

-

40

40

40

-

от 330 до 500 кВ

55

-

55

55

50

50

50

50

2. Содержание механических пр и мес ей

Отсутс твие (виз уально)

3. Содержание взвешенного угля в трансформаторах и выключателях

Отсутствие

4. Кислотное число, мг КОН на 1 г масла, не боле е

0,02

0,02

0,03

0,01

0,02

0,02

0,03

0,01

5. Реакция водной вытяжки

Н ейтра льная

6. Т е мпература вспышки, °С, не ниже

135

150

135

135

135

150

135

135

7. Кинематическая вязко с ть, 1 ·1 0-6 м2/с, не более:

при 20 °С

-

28

30

-

-

-

-

-

при 50 °С

9,0

9,0

9,0

9,0

-

-

-

-

8. Температура застывания, °С, не выше1

-45

-45

-45

-53

-

-

-

-

9. Натровая проба, баллы, не более

1

1

1

1

-

-

-

-

10. Прозрачность при +5 °С

Пр озрачно

11. Общая стабильность против окисления (по ГОСТ 981-75 *):

0,01

Отсутствие

0,03

Отсутствие

-

-

-

-

количество осадка после окисления, %, не более

кислотное число окисленного масла, мг КОН на 1 г масла, не более

0,1

0,1

0,3

0,03

-

-

-

-

12. Та н генс угла диэлектрических потерь, %, не более2:

при 20 °С

0,2

0,2

0,05

-

0,4

0,4

0,1

-

при 70 °С

1,5

2,0

0,7

0,3

2,0

2, 5

1,0

0,5

при 90 °С

-

-

1,5

0,5

-

-

2,0

0,7

_____________

1 Проверка не обязате л ь на для трансформаторов, устанавлива емых в р айо нах с умер енным климатом.

2 Нормы тангенса угла д и электри ческих потерь масла в маслонаполненных вводах см. в табл. 1.8.36 .

2 . Анал из масла перед включением оборудования. Масло, отбираемое из оборудования перед его включением под напряжен ием после монтажа, подвергается сокращенному анализу в объеме , предусмотрен ном в пп. 1-6 табл. 1.8.38 , а для оборудования 110 кВ и выше, кроме того по п. 12 табл. 1.8.38 .

3 . Испытание масла из аппаратов на стаби льность при его смешивании. При заливке в а ппараты свежих кондиционных масел разных марок смесь проверяется на стабильность в пропорц иях смешения, при этом стабильность смеси долж на быть не хуже стабильности одного из смешиваемых масел , обладающего наименьшей стабильностью. Проверка стабильности смеси масел производится только в случае смешения ингибированного и неингибированного масел.

ЭЛЕКТ Р ИЧЕСКИЕ АППАРАТЫ, ВТОРИЧНЫЕ ЦЕПИ И ЭЛЕКТРОПРОВОДКИ НАПРЯЖЕНИЕМ ДО 1 кВ

1.8.34 . Электрические а ппараты и вторичные цеп и схем защ ит, у правления, сигнализации и измерения испытываются в объеме, предусмотренном настоящим пара графом. Электропроводки напряжением до 1 кВ от рас пределительных пунктов до электроприемников испытываются по п. 1 .

1 . И змере ние сопротивления изоляции. Сопротивление изоляции должно быть не менее значений, приведенных в табл. 1.8.39 .

2 . Испытан ие повышенным напряже нием промышленной частоты. Испытательное напряжение для вторичных цепей схем защиты, управления, сигнализации и измерения со всеми присоединительными аппаратами (автоматические выключатели, магнитные пускатели, контакторы, реле, приборы и т.п.) 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

3 . Проверка действия максимальных, минимальных ил и не зав исимых расцепителей а втомат ических выключателей. Производится у автоматических выключателей с номинальным током 200 А и более. Пределы действия расцепителей должны соответствовать заводским данным.

4 . Проверка работы автоматических выключателей и контакторов при пониженном и номинальном напряжениях оператив ного тока. Значения напряжения и количество операций при испытании автоматических выключателей и контакторов многократными включениями и отключениями приведены в табл. 1.8.40 .

5 . Проверка релейной аппаратуры. Проверка реле защиты, управления, автоматики и сигнализации и других устройств производится в соответствии с действующими инструкциями. Пределы срабатывания реле на рабочих уставках должны соответствовать расчетным данным.

6 . Про верка правильност и функционирован ия полностью собранных схем при различных зн ачениях оперативного ток а. Все элементы схем должны надежно функционировать в предусмотренной проектом последовательности при значениях оперативного тока, приведенных в табл. 1.8.41 .

Таблица 1.8.39. Наименьшее допустимое сопротивление изоляции аппар атов, втор ич ных цепей и электропроводки до 1 кВ

И сп ыт уемы е объект

Напряжение мегаомметра, В

Сопротивление изоляции, МОм

Примечание

Вторичные цепи управления, защиты, измерения, сигнализации и т.п. в электроустановках напряжением выше 1 кВ:

шинки операт ивного тока и шинки цепей напряжения на щите управления

500 -1000

10

Испытания производятся при отсоединенных цепях

каждое присоединение вторичных цепей и цепей питания приводов выключателей и разъединителей

500-1000

1

Испытания производятся со всеми присоединенными аппаратами (обмотки приводов, контакторы, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.)

Вторичные цепи управления, защиты, сигнализации в релейно-контакторных схемах установок напряжением до 1 кВ

500-1000

0,5

Испытания производятся со всеми присоединенными аппаратами (магнитные пускатели, контакторы, реле, приборы и т.п.)

Цепи бесконтактных схем системы регулирования и управления, а также присоединенные к ним элементы

По данным завода-изготовителя

-

Цепи управления, защиты и возбуждения машин постоянного тока напряжением до 1,1 кВ, присоединенных к цепям главного тока

500-1000

1

-

С иловые и осветительные электропроводки

1000

0,5

Испытания в осветительных проводках производятся до вворачивания ламп с присоединением нулевого провода к корпусу светильника. Изоляция измеряется между проводами и относительно земли

Распределительные устройства, щиты и токопроводы напряжением до 1 кВ

500-1000

0,5

Испытания производятся для каждой секции распределительного устройства

Таблица 1.8.40. Испыт а ние контакторов и автоматическ их выключателей многократными включе ниями и отключениями

Операция

Напряже ние оп еративного тока, %, номинального

Количество опер аций

Включение

90

5

Включение и отключение

100

5

Отключение

80

10

Таблица 1.8.41. Напряжен и е оперативного тока, при котором должно обеспечиваться нормальное функционирование схем

Испытуемый об ъ ект

Напряж ение оперативного тока, % номиналь ного

Примечание

Схемы защиты и сигнализации в установках напряжением выше 1 кВ

80, 100

-

Схемы управления в установках напряжением выше 1 кВ:

испытание на включение

90, 100

-

то же, но на отключение

80, 100

-

Релейно-контакторные схемы в установках напряжением до 1 кВ

90, 100

Для простых схем кнопка - магнитный пускатель проверка работы на пониженном напряжении не произ водится

Бесконтактные схемы на логических элементах

85, 100, 110

Изменение напряжения производится на входе в блок питания

АККУМУЛЯТОРНЫЕ БАТАРЕИ

1.8.35 . Законченная монтажом аккумуляторная батарея испытывается в объ еме, предусмотренном настоящим параграфом.

1 . Измере ние сопрот ивлен ия изоляц ии. Измерение производится вольтметром (внутреннее сопротивление вольтметра должно быть точно известно, класс не ниже 1).

При полностью снятой нагрузке должно быть измерено напряжение батареи на зажимах и между каждым из зажимов и землей.

Сопротивление изоляции Rx вычисляется по формуле

где Rq - в нутреннее сопротивление во льтметра ; U - напряжение на зажимах батареи; U1 и U2 - напряжения между положительным зажимом и землей и отрицательным заж имом и землей.

Сопротивлен ие изоляции батареи должно быть не менее указанного ниже:

Номинальное напряжение, В ............... 24           48         110       220

Сопротивление, кОм ............................ 14           25         50         100

2 . Проверка емкост и отформова нной аккумуляторной батареи. Полностью заряженные аккумуляторы разряжают током 3- или 10-часового режима.

Емкость аккумуляторной батареи, приведенная к температуре +25 ° С, должна соответствовать данным завода-изготовителя.

3 . Проверка плотности температуры электролита. Плотность и температура электролита каждого элеме нта в конце заряда и разряда батареи должны соответствовать данным завода-изготовителя. Температура электролита при заряде должна быть не выше +40 ° С.

4 . Химич еский анали з электролита. Электролит для заливки кислотных аккумуляторных батарей должен готовиться из серной аккумуляторной кислоты сорта А по ГОСТ 667-73 * и дистиллированной воды по ГОСТ 6709-72 .

Содержание примесей и нелетучего остатка в разве денном электролите не должно превышать значений, приведенных ниже.

Прозрачность .............................................................................. Прозрачная

Окраска согласно колориметрическому определению, мл ...... 0,6

Плотность, т/м3, при 20 ° С ......................................................... 1,18

Содержание, %:

моногидрата ................................................................................. 24,8

железа ........................................................................................... 0,006

мышьяка ........................................................................................ 0,00005

марганца ....................................................................................... 0,00005

хлора ............................................................................................ 0,0005

окислов азота ............................................................................... 0,00005

Нелетучий остаток, % ................................................................ 0,3

Реакция на металлы, осаждаемые

сероводородом .......................................................  Выдерживает испытание

по ГОСТ 667-73 *, п. 19

Вещества, восстанавливающие

марганцовокислый калий .....................................  Выдерживает испытание

по ГОСТ 667-73 *, п. 18

5 . Измерение напряжен ия на элементах. Напряжение отстающих элементов в конце разряда не должно отличаться более чем на 1 - 1,5 % от среднего напряжения остальных элементов, а количество отстающих элементов должно быть не более 5 % их общего количества в батарее.

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА

1.8.36 . Заз емляющие устройства испы тываются в объеме, предусмотренном настоящим параграфом.

1 . Проверка элементов зазем ляющего устройства. Ее следует производить путем осмотра элементов заземляющего устройства в пределах доступности осмотру. Сечен ия и проводимости элементов заземляющего устройства должны соответствовать требованиям настоящих Правил и проектным данным.

2 . Проверка цеп и между заземлителями и заземляющими элементами. Следует проверить сечения, целость и прочность проводнико в заземления и зануления, их соединений и присоединений. Не должно быть обрывов и видимых дефекто в в заземляющих проводниках, соединяющих аппараты с контуром заземления. Надеж ность с варки проверяется ударом молотка.

3 . Проверка состояния пробивных предохран ителей в электроуста но вках до 1 кВ. Пробивные предохранители должны быть исправны и соответствовать номинальному напряжению электроустановки.

4 . Проверка цепи фаза - нуль в электроустановках до 1 кВ с глухим заземлением нейтрали. Проверку следует производить од ним из способов: непосредственным измерением тока однофазного замыкания на корпус и ли провод с помощью специальных приборов: измерением полного сопротивле ния петли фа за - нуль с последующим выч ислени ем тока однофазного замыка ния.

Ток однофазного замыкания на корпус или нулевой провод должен обеспечивать надежное срабатыва ние защиты с учетом коэффициенто в, приведенных в соответствующих гла вах настоящих Правил.

5 . Измерение сопротивле ния заземляющих устройств. Значения сопротивлен ия должны удовлетворять з начениям, приведенным в соответствующих главах настоящих Правил.

СИЛОВЫЕ КАБЕЛЬНЫЕ ЛИНИИ

1.8.37 . Силовые кабельные линии напряжением до 1 кВ испытываются по пп. 1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ - по пп. 1 - 3, 6, 7, 11, 13, напряжением 1 10 кВ и выше - в полном объеме, предусмотренном настоящим параграфом.

1 . Проверка целост и и фазировки жил кабеля. Проверяются целость и совпадение обозначений фаз подключаемых жил кабеля.

2 . Измерение сопротивления изоляци и. Производ ится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует прои зводить до и после испытания кабеля повышенным напряжением.

3 . Испытание повышенным напр яжением выпрямле нного тока. Силовые кабели выше 1 кВ испытываются повышенным напряже нием выпрямленного тока.

Таблица 1.8.42. Испытательное напряжение выпрямленного тока для силовых кабелей

Изоляция и марка кабеля

Испытательное напряжение, кВ, для кабелей на рабочее напряжение, кВ

Продолжи тельность испыта ния, мин

2

3

6

10

20

3 5

110

220

Б умажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

-

6

12

-

-

-

-

-

5

Пластмассовая

-

15

-

-

-

-

-

-

10

Значения испытательного напряжения и длительность приложения нормированного испытательного напряжения приведены в табл. 1.8.42.

В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки.

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

4 . Испытание повышенным напряжением промышленной частоты. Допускается производить для линий 110 - 220 кВ взамен испытания выпрямленным током; значение испытательного напряжения: для линий 110 кВ-220 кВ (130 кВ по отношению к земле); для линий 220 кВ-500 кВ (288 кВ по отношению к земле). Продолжительность приложения нормированного испытательного напряжения 5 мин.

5 . Определе ние активного сопротивле ния жил. Производится для линий 35 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм2 сечения, 1 м длины и температуре +20 °С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

6 . Определение электрической рабочей емкости жил. Производится для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5 %.

7 . Измерение распределения тока по одножильным кабелям. Неравномерность в распределении токов на кабелях не должна быть более 10 %.

8 . Проверка защиты от блуждающих токов. Производится проверка действия установленных катодных защит.

9 . Испытание на налич ие нерастворенного воздуха (пропиточ ное испытан ие). Производится для маслонаполненных кабельных линий 110 - 220 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1 %.

10 . Испыта ние подпитывающих агрегатов и автоматического под огре ва ко нцевых муфт. Производится для маслонаполненных кабельных линий 11 0 - 22 0 кВ.

Таблица 1.8.43. Пр е дельные значе ния показателей качества ма сл а кабель ных линий

Пока з атель масла

Нормы для масла марки

С-220

МН-3

Электрическая прочность, кВ/см, не менее

180

180

Тангенс угла диэлектрических потерь при +100 °С, %, не более

0,005

0,008

Кислотное число, мг КОН на 1 г масла, не более

0,02

0,02

Степень дегазации, %, не более

0,5

1,0

11 . Контроль состоя ния антикоррозийного покрытия. Производится для стального трубопровода маслонаполненных кабельных линий 110 - 220 кВ.

12 . Провер ка характерист ик масла. Производится для маслонаполненных кабельных линий 110 - 220 кВ. Отбор проб следует п роизводить из всех элементов линии. Пробы масла марки С-220, отбираемые через 3 сут после заливки, должны удовлетворять требованиям табл. 1.8.43 .

Пробы масла марки МН-3, отбираемые из линий низкого и высокого давления через 5 сут после заливки, должны удовлетворять требованиям табл. 1.8.43.

13 . Измере ние сопротивления заземления. Производится на линиях всех напряжений для концевых заделок, а на линиях 110 - 220 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ

1.8.38 . Воздушные линии электропередачи испытываются в объеме, предусмотр енном настоящим параграфом.

1 . Проверка изол яторов. Производится согласно 1.8.32 .

2 . Проверка соедине ний проводов. Ее следует производить путем внешнего осмотра и измерения падения напряжения или сопроти вления.

Опрессованные соединения проводов бракуются, если:

стальной сердечник расположен несимметрично;

геометрические размеры (длина и диаметр спрессованной части) не соответствуют требованиям инструкции по монтажу соединительных зажимов данного типа;

на поверхности соединителя или зажима имеются трещины, следы значительной коррозии и механических повр еждений;

падение напряжения или сопротивление на участке соединения (соединителе) более чем в 1,2 раза превышает падение напряжения или сопротивление на участке провода той же дл ины ( испытание проводится выборочно на 5 - 10 % соединителей) ;

кривизна опрессованного соедините ля превышает 3 % его длины, стальной сердечник опрессованного соединителя расположен несимметрично.

Сварные соединен ия бракуются , если:

произошел пережог повива наружного провода или обнаружено нарушение сварки при перегибе соединенных проводов;

усадочная раковина в месте сварки имеет глубину более 1/3 диаметра провода, а для сталеалюминиевых проводов сечен ием 150 - 600 мм2 - более 6 мм;

падение напряжения или сопротивление превышает более чем в 1,2 раза падение напряжения или сопротивление на участке провода такой же длины.

3 . И зм ерение сопрот ивления заземления опор, и х оттяжек и тросов. Производится в соответствии с 1.8.36 .

РА ЗД Е Л 2 .
КАНАЛИЗАЦИЯ ЭЛЕКТРОЭНЕРГИИ

ГЛ АВА 2. 1
ЭЛЕКТРОПРОВОДКИ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.1.1 . Настоящая глава Правил распространяется на электропроводки силовых, осветительных и вторичных цепей напряжением до 1 кВ переменного и постоянного тока, выполняемые внутри зданий и сооружений, на наружных их стенах, территориях пред приятий, учреждений, микрорайонов, дворо в, приусадебных участков, на строительных площадках с применением изолированных установочных проводов всех сечений, а также небронированных силовых кабелей с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 мм2 (при сечении более 16 мм2 - см. гл. 2.3 ).

Линии, выполняемые неизолированными проводами внутри помещений, должны отвечать требованиям, приведенным в гл. 2.2, вне зданий - в гл. 2.4.

Ответвления от ВЛ к вводам (см. 2.1.6 и 2.4.2), выполняемые с применением из олированных или неизолированных пров одов, должны сооружаться с соблюдением требований гл. 2.4, а ответвления, выполняемые с применением проводов (кабелей) на несущем тросе, - в соответствии с требованиями настоящей главы.

Кабельные линии, проложенные непосредственно в земле, должны отвечать требованиям, приведенным в гл. 2.3.

Дополнительные требования к электропроводкам приве д ены в гл. 1.5 , 3.4 , 5.4 , 5.5 и в разд. 7 .

2.1.2 . Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими защитными конструкциями и деталями, установленными в соответствии с настоящими Правилами.

2.1.3 . Кабель, шнур, провод, защищенный и незащищенный, кабель и провод специальны й - определения по ГОСТ.

2.1.4 . Электропроводки разделяются на следующие виды:

1 . Открытая электропроводка, проложенная по поверхности стен, потолков, по фермам и другим строительным элементам зданий и сооружений, по опорам и т.п.

При открытой электропроводке применяются следующие способы прокладки проводов и кабелей: непосредственно по поверхности стен, потол ков и т.п. , на струнах, тросах, роликах, изоляторах, в трубах, коробах, гибких металлических рукавах, на лотках, в электротехническ их плинтусах и наличниках, свободной подвеской и т.п.

О ткрытая электропроводка может быть стационарной, передвиж ной и переносной.

2 . Скрытая электропроводка - проложенная внутри констру ктивных элементов зданий и сооружений (в стенах, полах, фундаментах, перекрытиях), а также по перекрытиям в подготовке пола, непосредственно под съемным полом и т.п.

При скрытой электропроводке применяются следующие способы прокладки проводов и кабелей: в трубах, гибких металлических рукавах, коробах, замкнутых каналах и пустотах строительных конструкций, в заштукатуриваемых бороздах, под штукатуркой, а также замоноличиванием в строительные конструкции при их изготовлении.

2.1.5 . Наружной электропроводкой называется электропроводка, проложенная по наружным стенам зданий и сооружений, под навесами и т.п. , а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т.п.

Наружная электропроводка может быть открытой и скрытой.

2.1.6 . Вводом от воздушной линии электропередачи называется электропроводка, соединяющая ответвление от ВЛ с внутренней электропроводкой, считая от изоляторов, установленных на наружной поверхности (стене, крыше) здания или сооружения, до зажимов вводного устройства.

2.1.7 . Струной как несущим элементом электропроводки называется стальная проволока, натянутая вплотную к поверхности стены, потолка и т.п. , предназначенная для крепления к ней проводов, кабелей или их пучков.

2.1.8 . Полосой как несущим элементом электропровод ки называется металлическая полоса, закрепленная вплотную к поверхности стены, потолка и т.п., предназначенная для крепления к ней проводов, кабелей или их пучков.

2.1.9 . Тросом как несущим элементом электропроводки называется стальная проволока или стальной канат, натянутые в воздухе, предназначенные для подвески к ним проводов, кабеле й или их пучков.

2.1.10 . Коробом называется закрытая полая конструкция прямоугольного или другого сечения, предназначенная для прокладки в ней проводов и кабелей. Короб должен служить защитой от механических повреждений проложенных в нем проводов и кабелей.

Короба могут быть глухими или с открываемыми крышками, со сплошными или перфорированными стенками и крышками. Глухие короба должны иметь только сплошные стенки со всех сторон и не иметь крышек.

Короба могут применятьс я в помещениях и наружных установках.

2.1.11 . Лотком называется открытая конструкция, предназначенная для прокладки на ней проводов и кабелей.

Лоток не является защитой от внешних механических повре ждений проложенных на нем проводов и кабелей. Лотки должны изготовляться из несгораемых материалов. Они могут быть сплошными, перфорированными или решетчатыми. Лотки могут приме няться в помещениях и наружных установках.

2.1.12 . Чердачным помещением называется такое непроизводственное помещение над верхним этажом здания, потолком которого является крыша здания и которое имеет несущие конструкции (кровлю, фермы, стропила, балки и т.п.) из сгораемых материалов.

Аналогичные помещения и технические этажи, расположенные непосредственно над крышей, перекрытия и конструкции которых выполнены из несгораемых материалов, не рассматриваются как чердачные помещения.

ОБЩИЕ ТРЕБОВАНИЯ

2.1.13 . Допустимые длительные токи на провода и кабели электропроводок должны приниматься по гл. 1.3 с учетом температуры окружающей среды и способа прокладки.

2.1.14 . Сечения токопроводящих жил проводов и кабелей в электропроводках должны быть не менее приведенных в табл. 2.1.1 . Сечения жил для зарядки осветительных арматур должны приниматься по 6.5.12 - 6.5.14 . Сечения заземляющих и нулевых защитных проводников должны быть выбраны с соблюдением требований гл. 1.7 .

2.1.15 . В стальных и других механически прочных трубах, рукавах, коробах, лотках и замкнутых каналах строительных конструкций зданий допускается совместная прокладка проводов и кабелей (за иск лючением взаиморезервируемых ):

1 . Всех цепей одного агрегата.

2 . Силовых и контрольных цепей нескольких машин, панелей, щитов, пультов и т.п. , связанных технологическим процессом.

3 . Цепей, питающих сложный светильник.

4 . Цепей нескольких групп одного вида освещения (рабочего или аварийного) с общим числом проводов в трубе не более восьми.

5 . Осветительных цепей до 42 В с цепями выше 42 В при условии заключения проводов цепей до 42 В в отдельную и золяционную трубу.

Таб л ица 2.1.1 . Наименьшие сече ния токопроводящих ж ил про водов и кабелей в электропроводках

Проводник и

Сеч ение жил, мм2

медных

а люминиевы х

Шнуры для присоединения бытовых электроприемников

0,35

-

Каб ели для присоединения переносных и пер едвижных электроприемников в промышленных установках

0,75

-

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

1

-

Н езащищен ные изолиро ванные провода для стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

1

2,5

на лотках, в коробах (кроме глухих ):

для жил, присоединяемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

-

многопроволочных (гибких)

0,35

-

на изоляторах

1,5

4

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах; вводы от воздуш ной линии

2,5

4

под навесами на роликах

1,5

2,5

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических ру кавах и глухих коробах

1

2

Кабели и защищенные изолированные провода для стац ионарной электропроводки (бе з тр уб, рукавов и глухих коробов ):

для жил, присоеди няемых к винтовым зажимам

1

2

для жил, присоединяемых пайкой:

однопроволочных

0,5

-

многопроволочных (гибких)

0,35

-

За щищенные и не защ ищенные провода и кабе ли, пр окла дываем ые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

1

2

2.1.16 . В одной трубе, рукав е, коробе, пучке, замкнутом канале строительной констру кции или на одном лотке запрещается совместная прокладка взаиморезервируемых цепей, цепей рабочего и аварий ного осве щения, а также цепей до 42 В с цепям и выше 42 В (исключе ние см. в 2.1.15 , п. 5 и в 6.1.16 , п. 1). Прокладка этих цепе й допус кается лишь в разных отсеках коробов и лотков, имеющих сплошные продольные перегородки с пределом огнестойкости не менее 0,25 ч и з несгораемого материала.

Допускается прокладка цепей аварийного (эва куационного) и рабочего освещения по разным наружным сторонам профиля (швеллера, уголка и т.п. ).

2.1.17 . В кабельных сооружения х, производственных помещения х и электропомещениях для электропроводок следует применять провода и кабели с оболочками только из трудносгораемых или несгораемых материалов, а незащищенные провода - с изоляцией только и з трудносгораемых или несгораемых материалов.

2.1.18 . При переменном или выпрямленном токе прокладка фазных и нулевого (или прямого и обратного) проводников в стальных трубах или в изоляционных трубах со стальной оболочкой должна осуществляться в одной общей трубе.

Допускается прок ладывать фазный и нулевой рабочий (или прямой и обратный) проводники в отдельных стальных трубах или в изоляционных трубах со стальной оболочкой, если длительный ток нагрузки в проводниках не превышает 25 А.

2.1.19 . При прокладке проводов и кабелей в трубах, глухих коробах, гибких металлических ру кавах и замкнутых каналах должна быть обеспечена возможность замены проводов и кабелей.

2.1.20 . Конструктивные элементы зданий и сооружений, замкнутые каналы и пустоты которых исп ользуются для прокладки проводов и кабелей, должны быть несгораемыми.

2.1.21 . Соединение, ответвление и оконцевание жил проводов и кабелей долж ны производиться при помощи опрессовки, сварки, пайки или сжимов (винтовых, болтовых и т.п.) в соответствии с действующими инструкциями, утвержденными в установленном порядке.

2. 1 .22 . В местах соединения, отв етвления и присоединения жи л проводов или кабелей должен быть предусмотрен запас провода ( каб еля), обеспечивающий возможность повторного соединения ответвления или присоединения.

2.1.23 . Места соединения и ответвления проводов и кабелей должны быть доступны для осмотра и ремо нта.

2.1.24 . В местах со единения и ответвления провода и кабели не должны испытывать механических усилий тяжения.

2.1.25 . Места соединения и ответвления жил проводов и кабелей, а также соединительные и ответвительные сжимы и т.п. должны иметь изоляцию, равноценную изоляции жил целых мест этих проводов и кабелей.

2.1.26 . Соединение и ответвление проводов и кабел ей, за исключением проводов, проложенных на изолирующих опорах, должны выполняться в соединит ельных и ответвительных коробках, в и золяционных корпусах соединительных и ответвительных сжимов, в специальных нишах строительных конструкций, внутри корпусо в электроустановочных изделий, аппаратов и машин. При прокладке на изолирующих опорах соеди нение или ответвлен ие проводов следует выполнять непосредствен но у изолятора, клицы или на них, а также на ролике.

2.1.27 . Конструкция соединительных и ответвительных коробок и сжимов должна соответствовать способам прокладки и условиям окружающей среды.

2.1.28 . Соединительные и ответвительные коробки и изоляционные корпуса соединительных и ответвительных сжимов должны быть, как правило, изготовлены из несгораемых или трудносгораемых материалов.

2.1.2 9 . Металлические элеме нты электропроводок (конструкции, короба, лотки, трубы, рукава, коробки, скобы и т.п. ) должны быть защищены от коррозии в соответствии с условиями окружающей среды.

2.1.30 . Электропроводки должны быть выполнены с учетом возможных перемещений их в местах пересечений с температурными и осадочными швами.

ВЫБОР ВИДА ЭЛЕКТРОПРОВОДКИ, ВЫБОР ПРОВОДОВ И КАБЕЛЕЙ И СПОСОБА ИХ ПРОКЛАДКИ

2.1.31 . Электропроводка должна соответствовать условиям окружающей среды, назначению и ценности сооружений, их конструкции и архитектурным особенностям.

2.1.32 . При выборе вида электропроводки и способа прокладки проводов и кабелей должн ы учитываться требования электробезопасности и пожарной безопасности.

2.1.33 . Выбор видов электропроводки, выбор проводов и кабелей и способа их прокладки следует осуществлять в соответствии с табл. 2.1.2 .

При наличии одновременно двух или более условий, характеризующих окружающую среду, электропроводка должна соответствовать всем этим условиям.

2.1.34 . Оболочки и изоляция проводов и кабелей, применяемых в электропроводках, должны соответствовать способу прокладки и условиям окружающей среды. Изоляция, кроме того, должна соответствовать номинальному напряжению сети.

При наличии специальных требований, обусловленных характеристиками установки, изоляция проводов и защитные оболочки проводов и кабелей долж ны быть выбраны с учетом этих требований (см. также 2.1.50 и 2.1.51).

2.1 .3 5 . Нулевые рабочие проводники должны иметь изоляцию, равноценную изоляции фазных проводников.

В производственных нормаль ных помещениях допускается использование стальных труб и тросов открытых электропроводок, а также металлических корпусов открыто установленных токопроводов, металлических конструкций зданий, конструкций производственного назначения (например, фермы, колонны, подкрановые пути) и механизмов в качестве одного из рабочих проводников линии в сетях напряжением до 42 В. При этом должны быть обеспечены непрерывност ь и достаточная проводимость этих проводников, видимость и надежная сварка стыков.

Использование указанных выше конструкций в качестве рабочего проводника не допускается, если конструкции находятся в непосредственной близости от сгораемых частей зданий или конструкций.

2.1.36 . Прокладка проводов и кабелей, труб и коробов с проводами и кабелями по условиям пожарной безопасности должна удовлетворять требованиям табл. 2.1.3 .

2.1.37 . При открытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов расстояние в свету от провода (кабеля) до поверхности оснований, конструкций, деталей из сгораемых материалов должно составлять не менее 10 мм. При невозможности обеспечить указанное расстояние провод (кабель) следует отделять от поверхности слоем несгораемого материала, выступающим с каждой стороны провода (кабеля) не менее чем на 10 мм.

2.1.38 . При скрытой прокладке защищенных проводов (кабелей) с оболочками из сгораемых материалов и незащищенных проводов в закрытых нишах, в пустотах строительных конструкций (например, между стеной и облицовкой), в бороздах и т.п. с наличием сгораемых конструкций необходимо защищать провода и кабели сплошным слоем несгораемого материала со всех сторон.

2.1.39 . При открытой прокладке труб и коробов из трудносгораемых материалов по несгораемым и трудносгораемым основаниям и конструкциям расстояние в свету от трубы (короба) до поверхности конструкций, деталей из сгораемых материалов должно составлять не менее 100 мм. При невозможности обеспечить указанное расстояние трубу (короб) следует отделять со всех сторон от этих поверхностей сплошным слоем несгораемого материала (штукатурка, алебастр, цементный раствор, бетон и т.п.) толщиной не менее 10 мм.

2.1.40 . При скрытой прокладке труб и коробов из трудносгораемых материалов в закрытых нишах, в пустотах строительных конструкций (например, между стеной и облицовкой), в бороздах и т.п. трубы и короба следует отделять со всех сторон от поверхностей конструкций, деталей из сгораемых материалов сплошным слоем несгораемого материала толщиной не менее 10 мм.

2.1.41 . При пересечениях на коротких участках электропроводки с элементами строительных конструкций из сгораемых материалов эти участки должны быть выполнены с соблюдением требований 2.1.36 - 2.1.40 .

2.1.42 . В местах, где вследствие высокой температуры окружающей среды применение проводов и кабелей с изоляцией и оболочками нормальной теплостойкости невозможно или приводит к нерациональному повышению расхода цветного металла, следует применять провода и кабели с изоляцией и оболочками повышенной теплостойкости.

2.1.43 . В сырых и особо сырых помещениях и наружных установках изоляция проводов и изолирующие опоры, а также опорные и несущие конструкции, трубы, короба и лотки должны быть влагостойкими.

Т а блица 2.1.2 . Выбор видов электропроводок, способов прокладк и и проводов и кабелей

Условия окружающей среды

В ид электропроводки и способ прокла дки

Прово да и кабели

Открытые электропроводки

Сухие и влажные пом ещения

На роликах и клицах

Незащищенные одножильные провода

Сухие помещения

То же

Скрученные двухжильные провода

Помещения всех видов и наружные установки

На изоляторах, а также на роликах, предназначенных для прим енения в сырых местах. В наружных у становках ролики для сырых мест (больших размеров) допускается применять то лько в местах, где исключена возможность непосредственного попадания на электропроводку дождя или снега (под навесами)

Незащищенные одножильные провода

Наружные установки

Непосредственно по поверхности стен, потолков и на струнах, полосах и других несу щих конструкциях

Кабель в неметаллической и металлической оболочках

Помещения всех видов

То же

Не за щи щенные и защищенные одно- и многожильные провода. Кабели в неметаллической и металлической оболочках

Помещения всех видов и наруж ные установки

На лотках и в коробах с открываемыми крышками

То же

Помещения всех видов и наружные установки (только специальные провода с несущим тросом для наружных установок или кабели)

На тросах

Специальные провода с несущим тросом. Незащищенные и за щищенны е одно- и многожильные провода. Кабели в неметаллической и металлической оболочках

Скрытые электропроводки

Помещения всех видов и наружные установки

В неметаллических трубах из сгораемых материалов (несамозатухающий полиэтилен и т.п. ). В замкнутых каналах строительных конструкций. Под штукатуркой.

Исключения :

1. Запрещается применение изоляционных труб с металлической оболочкой в сырых, особо сырых помещениях и наружных установках.

2. Запрещается применение стальных труб и стальных глухих коробов с толщиной стенок 2 мм и менее в сырых, особо сырых помещениях и наружных установках

Незащищенные и защищен ные, одно- и многожильные провода. Кабели в неметаллической оболочке

Сухие, влажные и сырые помещения

Замоноличенно в строительных конструкциях при их изготовлении

Незащищенные провода

Открытые и скрытые электропроводки

Помещения всех видов и наружные установки

В металлических гибких рукавах. В стальных трубах (обыкновенных и тонкостенных) и глухих стальных коробах. В неметаллических трубах и неметаллических глухих коробах из трудносгораемых материалов. В изоляционных трубах с металлической оболочкой.

Исключения :

1. Запрещается применение изоляционных труб с металлической оболочкой в сырых, особо сырых помещен иях и наружных установках.

2. Запрещается применение стальных труб и стальных глухих коробов с толщиной стенок 2 мм и менее в сырых, особо сырых помещениях и наружных установках

Незащищенные и защищен ные одно- и многожиль ные провода. Кабели в неметаллической оболочке

2.1.44 . В пыльных помещениях не рекомендуется применять способы прокладки, при которых на элементах электропроводки может скапливаться пыль, а удаление ее затруднительно.

2.1.45 . В помещениях и наружных установках с химически активной средой все элементы электропроводки должны быть стойкими по отношению к среде либо защищены от ее воздействия.

2.1.46 . Провода и кабели, имеющие несветостойкую наружну ю изоляцию или оболочку, должны быть защищены от воздействия прямых солнечных лучей.

2.1.47 . В местах, где возможны механические повреждения электропроводки, открыто проложенные провода и кабели должны быть защищены от них своими защитными оболочками, а если такие оболочки отсутствуют или недостаточно стойки по от ношению к механическим воздействиям, - трубами, коробами, ограждениями или применением скрытой электропроводки.

2.1.48 . Провода и кабели должны применяться лишь в тех областях, которые указаны в стандартах и технических условиях на кабели (провода).

2.1.49 . Для стационарных электропроводок должны применяться преимущественно провода и кабели с алюминиевыми жилами. Исключения см. в 2.1.70 , 3.4.3 , 3.4.12 , 5.5.6 , 6.5.12 - 6.5.14 , 7.2.53 и 7.3.93 .

Не допускается применение проводов и кабелей с алюминиевыми жилами для присоединения к электротехническим устройствам, установленным непосредственно на виброизолирующих опорах.

Таблица 2.1.3. Выбор видов электропроводок и способов прокладк е проводов и кабелей по услови ям пожарной безопас ности

Вид эл ек тропроводки и способ прокладки по основаниям и ко нструкциям

Провода и кабели

и з сгораемых материалов

из несгораемых или трудносгораемых материалов

Открытые электропрово дки

На роликах, изоляторах или с подкладкой несгораемых материалов1

Непосредственно

Незащищенные провода; защищенные провода и кабели в оболочке из сгораемых материалов

Непосредстве нно

»

Защищенные провода и кабели в оболочке из несгораемых и трудносгораемых материалов

В трубах и коробах из несгораемых материалов

В трубах и коробах из трудносгораемых и несгораемых материалов

Незащище нные и защищенные провода и кабели в оболочке из сгораемых, трудносгораемых материалов

Скр ытые электропровод ки

С подкладкой несгораемых материалов1 и последующим оштукатуриванием или защитой со всех сторон сплошным слоем других несгораемых материалов

Непосредственно

Незащищенные провода ; защищенные провода и кабели в оболочке из сгора емых материалов

С подкладкой несгораемых материалов1

»

Защищенные провода и кабели в оболочке из трудносгораемых материалов

Непосредственно

»

То же из несгораемых

В трубах и коробах из трудносгораемых материалов - с подкладкой под трубы и короба несгораемых материалов1 и последующим заштукатуриванием2

В трубах и коробах : из сгораемых материалов - замоноличенно, в бороздах и т.п., в сплошном слое несгораемых материалов3

Незащищенные провода и кабели в оболоч ке из сгораемых, трудносгораемых и несгораемых материалов

То же из несгораемых материалов - непосредств енно

То же из трудно-сгораемых и несгораемых материалов - непосредственно

_____________

1 По д кладка из несгораемых материалов должна выступать с каждой сторо ны провода, кабеля, трубы или короба не менее чем на 10 мм.

2 Заштукатуривание трубы о суще ствл яется сплош ным слоем штукатурки, алебастра и т.п. толщиной не менее 10 мм над трубо й.

3 Сплош н ым слоем н есгораемого материала вокруг трубы (короба) может быть слой штукатурки, але бастрового, цементного раствора или бетона толщиной не мен ее 10 мм.

В музеях, картинных галереях, библиотеках, архивах и других хранилищах союзного значения следует применять провода и кабели только с медными жилами.

2.1.50 . Для питания переносных и передвижных электроприемников следует применять шнуры и гибкие кабели с медными жилами, специально предназначенные для этой цели, с учетом возможных механи ческих воздействий. Все жилы указанных проводников, в том числе за земляющая, должны быть в общей оболочке, оплетке или иметь общую изоляцию.

Для механизмов, имеющих ограниченное перемещение (краны, передвиж ные пилы, механизмы ворот и пр.), следует применять такие конструкции токоподвода к ним, которые защищают жилы проводов и кабелей от излома (например, шлейфы гибких кабелей, каретки для подвижной подвески гибких кабелей).

2.1.51 . При наличии масел и эмульсий в местах прокладки проводов следует применять провода с маслостойкой изоляцией либо защищать провода от их воздействия.

ОТКРЫТЫЕ ЭЛЕКТРОПРОВОДКИ ВНУТРИ ПОМЕЩЕНИЙ

2.1.52 . Открытую прокладку незащищенных изолированных проводов непосредственно по основаниям, на роликах, изоляторах, на тросах и лотках следует выполнять:

1 . При напряжении выше 42 В в помещениях без повышенной опасности и при напряжении до 42 В в любых помещениях - на высоте не менее 2 м от уров ня пола или площадки обслуживания.

2 . При напряжении выше 42 В в помещениях с повышенной опасностью и особо опасных - на высоте не менее 2,5 м от уровня пола или площадки обслуживания.

Данные требования не распространяются на спуски к выключателям, розеткам, пусковым аппаратам, щиткам, светильникам, устанавливаемым на стене.

В производственных помещениях спуски незащищенных проводов к выключателям, розеткам, аппаратам, щиткам и т.п. должны быть защищены от механических воздействий до высоты не менее 1,5 м от уровня пола или площадки обслуживания.

В бытовых помещениях промышленных предприятий, в жилых и общественных зданиях указанные спуски допускается не защищать от механических воздействий.

В помещениях, доступных только для специально обученного персонала, высота расположения открыто проложенных незащищенных изолированных проводов не нормируется.

2.1.53 . В крановых пролетах незащищенные изолированные провода следует прокладывать на высоте не менее 2,5 м от уровня площадки тележки крана (если площадка расположена выше настила моста крана) или от настила моста крана (если настил расположен выше площадки тележки). Если это невозможно, то должны быть выполнены защитные устройства для предохранения персонала, находящегося на тележке и мосту крана, от случайного прикосновения к проводам. Защитное устройство должно быть установлено на всем протяжении проводов или на самом мосту крана в пределах расположения проводов.

2.1.54 . Высота открытой прокладки защищенных изолированных проводов, кабелей, а также проводов и кабелей в трубах, коробах со степенью защиты не ниже I Р20, в гибких металлических рукавах от уровня пола или площадки обслуживания не нормируется.

2.1.55 . Если незащ ищенные изолированные провода пересекаются с незащищенными ил и защищенным и изолированными проводами с расстоянием между проводам и менее 10 мм, то в местах пер есечен ия на каждый незащ ищенный провод должна быть на ложена дополнительная изоляц ия.

2.1.56 . При пересечении незащи щенных и защищенных проводов и кабелей с трубопроводами расстояния между ними в свету должны быть не менее 50 мм, а с трубопроводами, содержащими горючие или легковоспламеняющиеся жидкости и газы, - не менее 100 мм. При расстоянии от проводов и кабелей до трубопроводов менее 250 мм провода и кабели должны быть дополнительно защищены от механических повреждений на длине не менее 250 мм в каждую сторону от трубоп ровода.

При пересечении с горячими трубопроводам и провода и кабели должны быть защищены от воздействия высокой температуры или должны иметь соответствующее исполнение.

2.1.57 . При параллельной прокладке расстояние от проводов и кабелей до трубопроводов должно быть не менее 100 мм, а до трубопроводов с горючими или легковоспламеняющимися жидкостями и газами - не менее 400 мм.

Провода и кабели, проложенные параллельно горячим трубопроводам, должны быть защищены от воздействия высокой температуры либо должны иметь соответствующее исполнение.

2.1.58 . В местах прохода проводов и кабелей через стены, междуэтажные перекрытия или выхода их наружу необходимо обеспечивать возможность смены электропроводки. Для этого проход должен быть выполнен в трубе, коробе, проеме и т.п. С целью предотвращения проник новения и скопления воды и распространения пожара в местах прохода через стены, перекрытия или выхода наружу следует заделывать зазоры между проводами, кабелями и трубой (коробом, проемом и т.п. ), а также резервные трубы (короба, про емы и т.п.) легко удаляемой массой от несгораемого материала. Заделка должна допускать замену, дополнительную прокладку новых проводов и кабелей и обеспечивать предел огнестойкости проема не менее предела огнестойкости стены (перекрытия).

2.1.5 9 . При прокладке незащищенных проводов на изолирующих опорах провода долж ны быть дополнительно изолированы ( например, изоляционной трубой) в местах проходов через сте ны или перекрытия. При проходе этих проводов из одного сухого или влажного помещения в другое сухое или влажное помещение все провода одной ли нии допускается прокладывать в одной изоляционной трубе.

Пр и проходе проводов из сухого или влажного помещения в сырое, из одного сырого помещения в другое сырое или при выходе проводов и з помещения наружу каждый провод должен прокладываться в отдель ной изоляционной трубе. При выходе из сухого или влажного помещения в сырое или наружу здания соединения проводов должны выполняться в сухом или влажном помещении.

2.1.60 . На лотках, опорных поверхностях, тросах, струнах, полосах и других несущих конструкциях допускается прокладывать провода и кабели вплотную один к другому пучками (группами) различной формы (например, круглой, прямоугольной в несколько слоев).

Провода и кабели каждого пучка должны быть скреплены между собой.

2.1.61 . В коробах провода и кабели допускается прокладывать многослойно упорядоченным и произвольным (россыпью) взаимным расположением. Сумма сечений проводов и кабелей, рассчитанных по их наружным диаметрам, включая изоляцию и наружные оболочки, не должна превышать: для глухих коробов 35 % сечения короба в свету; для коробов с открываемыми крышками 40 %.

2.1.62 . Допустимые длительные токи на провода и кабели, проложенные пучками (группами) или многослойно, должны приниматься с учетом снижающих коэффициентов, учитывающих количество и расположение проводников (жил) в пучке, количество и взаимное расположение пучков (слоев), а также наличие ненагруженных проводников.

2.1.63 . Трубы, короба и гибкие металлические рукава электропроводок должны прокладываться так, чтобы в них не могла скапливаться влага, в том числе от конденсации паров, содержащихся в воздухе.

2.1.64 . В сухих непыльных помещениях, в которых отсутствуют пары и газы, отрицательно воздействующие на изоляцию и оболочку проводов и кабелей, допускается соединение труб, коробов и гибких металлических рукавов без уплотнения.

Соединение труб, коробов и гибких металлических рукавов между собой, а также с коробами, корпусами электрооборудования и т.п. должно быть выполнено:

в помещениях, которые содержат пары или газы, отрицательно воздействующие на изоляцию или оболочки проводов и кабелей, в наружных установках и в местах, где возможно попадание в трубы, короба и рукава масла, воды или эмульсии, - с уплотнением ; короба в этих случаях должны быть со сплошными стенками и с уплотненными сплошными крышками либо глухими, разъемные короба - с уплотнениями в местах разъема, а гибкие металлические рукава - герметичными ;

в пыльных помещениях - с уплотнением соединений и ответвлений труб, рукавов и коробов для защиты от пыли.

2.1.65 . Соединение стальных труб и коробов, используемых в качестве заземляющих или нулевых защитных проводников, должно соответствовать требованиям, приведенным в настоящей главе и гл. 1.7 .

СКРЫТЫЕ ЭЛЕКТРОПРОВОДКИ ВНУТРИ ПОМЕЩЕНИЙ

2.1.66 . Скрытые электропроводки в трубах, коробах и гибких металлических рукавах должны быть выполнены с соблюдением требований, приведенных в 2.1.63 - 2.1.65 , причем во всех случаях - с уплотнением. Короба скрытых электропроводок должны быть глухими.

2.1.67 . Выполнение электропроводки в вентиляционных каналах и шахтах запрещается. Допускается пересечение этих каналов и шахт одиночными проводами и кабелями, заключенными в стальные трубы.

2.1.68 . Прокладку проводов и кабелей за подвесными потолками следует выполнять в соответствии с требованиями настоящей главы и гл. 7.1 .

ЭЛЕКТРОПРОВОДКИ В ЧЕРДАЧНЫХ ПОМЕЩЕНИЯХ

2.1.69 . В чердачных помещениях могут применяться следующие виды электропроводок:

открытая;

проводами и кабелями, проложенными в трубах, а также защищенными проводами и кабелями в оболочках из несгораемых или трудносгораемых материалов - на любой высоте ;

незащищенными изолированными одножильными проводами на роликах или изоляторах (в чердачных помещениях производственных зданий - только на изоляторах) - на высоте не менее 2,5 м; при высоте до проводов менее 2,5 м они должны быть защищены от прикосновения и механических повреждений ;

скрытая: в стенах и перекрытиях из несгораемых материалов - на любой высоте.

2.1.70 . Открытые электропроводки в чердачных помещениях должны выполняться проводами и кабелями с медными жилами.

Провода и кабели с алюминиевыми жилами допускаются в чердачных помещениях: зданий с несгораемыми перекрытиями - при открытой прокладке их в стальных трубах или скрытой прокладке их в несгораемых стенах и перекрытиях; производственных зданий сельскохозяйственного назнач ения со сгораемыми перекрытиями - при открытой прокладке их в стальных трубах с исключением проникновения пыли внутрь труб и соединительных (ответвительных) коробок; при этом должны быть применены резьбовые соединения.

2.1.71 . Соединение и ответвление медных или алюминиевых жил проводов и кабелей в чердачных помещениях должны осуществляться в металлических соединительных (ответвительных) коробках сваркой, опрессовкой или с применением сжимов, соответствующих материалу, сечению и количеству жил.

2.1.72 . Электропроводка в чердачных помещениях, выполненная с применением стальных труб, должна отвечать также требованиям, приведенным в 2.1.63 - 2.1.65 .

2.1.73 . Ответвления от линий, проложенных в чердачных помещениях, к электроприемникам, установленным вне чердаков, допускаются при условии прокладки линий и ответвлений открыто в стальных трубах или скрыто в несгораемых стенах (перекрытиях).

2.1.74 . Коммутационные аппараты в цепях светильников и других электроприемников, установленных непосредственно в чердачных помещениях, должны быть установлены вне этих помещений.

НАРУЖНЫЕ ЭЛЕКТРОПРОВОДКИ

2.1.75 . Незащищенные и золированные провода наружной электропроводки должны быть расположены или ограждены таким образом, чтобы они были недоступны для прикосновения с мест, где возможно частое пребывание людей (например, балкон, крыльцо).

От указанных мест эти провода, проложенные открыто по стенам, должны находиться на расстоянии не менее, м:

При горизонтальной прокладке:

под балконом, крыльцом, а также над крышей

промышленного здания ............................................... 2,5

под окном ...................................................................... 0,5

под балконом ................................................................ 1,0

под окном (от подоконника) ........................................ 1,0

При вертикальной прокладке до окна ............................. 0,75

То же, но до балкона ......................................................... 1,0

От земли ............................................................................. 2,75

При подвеске проводов на опорах около зданий расстояния от проводов до балконов и окон должны быть не мен ее 1,5 м при максимальном отклонени и проводов.

Наружная электропро водка по крышам жилых, общественных зданий и зрели щных предприятий не допускается, за исключением вводов в здания (предприятия) и ответвлений к этим вводам (см. 2.1.79).

Незащищенные изолированные провода наружной эле ктропроводки в отношении прикосновения следует рассматривать как неизолированные.

2.1.76 . Расстояния от проводов, пересекающих пожарные проезды и пути для перевозки грузов, до поверхности земли (дороги) в проезжей част и должны быть не менее 6 м, в непроезжей части - не менее 3,5 м.

2.1.77 . Расстояния между проводами должны быть: при пролете до 6 м - не менее 0,1 м, при пролете более 6 м - не менее 0,15 м. Расстояния от проводов до стен и опорных конструкций должны быть не менее 50 мм.

2.1.78 . Прокладка проводов и кабелей наружной электропроводки в трубах, коробах и гибких металлических рукавах должна выполняться в соответствии с требо ваниями, приведенными в 2.1.63 - 2.1.65 , пр ичем во всех случаях с уплотнением. Прокладка проводов в стальны х трубах и коробах в земле вне зданий не допускается.

2.1.7 9 . Вводы в здания рекомендуется выполнять через стены в изоляционных трубах таким образом, чтобы вода не могла скапливаться в проходе и проникать внутрь здан ия.

Расстояние от проводов перед вводом и проводов ввода до поверхности земли должно быть не менее 2,75 м (см. также 2.4.37 и 2.4.56).

Расстояние между проводами у и золяторов ввода, а также от проводов до выступающих частей здания (свесы крыши и т.п. ) должно быть не менее 0,2 м.

Вводы допускается выполнять через крыши в стальных трубах. При этом расстояние по вертикали от проводов ответвления к вводу и от проводов ввода до крыши должно быть не менее 2,5 м.

Для зданий небольшой высоты (торговые павильоны, киоски, здания контейнерного типа, передв ижные будки, фургоны и т.п. ), на крышах которых исключено пребывание людей, расстояние в свету от проводов ответвлений к вводу и проводов ввода до крыши допускается принимать не менее 0 ,5 м. При этом расстояние от проводов до поверхности земли должно быть не менее 2,75 м.

ГЛ АВА 2.2
ТОКОПРОВОДЫ Н АПРЯЖЕНИЕМ ДО 35 кВ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.2.1 . Настоящая глава Правил распространяется на токопроводы переменного и постоянного тока напряжением до 35 кВ. Дополнительные требования к токопроводам, устанавливаемым во взрывоопасных и пожароопасных зонах, приведены соответственно в гл. 7.3 и 7.4 . Глава не распространяется на специальные токопроводы для э лектролизных установок, короткой сети электротермических установок, а также на токопроводы, устройство которых определяется специальными правилами или нормами.

2.2.2 . Токопроводом называется устройство, предназ наченное для передачи и распределения электроэнергии, состоящее из неизолированных или изолированных проводников и относящи хся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.

2.2.3 . В зависимости от вида проводников токопроводы подразделяются на гибкие (при использо вании проводов) и жесткие (при использовании жестких шин).

Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется ши но проводом.

В зависимости от назначения шинопроводы подразделяются на:

магистральные, предназначенные в ос новном для присоединения к ним распределительных шинопроводов и силовых распределительных пунктов, щитов и отдельных мощных электроприемников;

распределительные, предназначенные в основном дл я присоединения к ним электроприемников;

троллейные, предназначенные для питания п ер едвижных электроприемников;

осветительные, предназначенные для питания светильников и электроприемников небольшой мощности.

2.2.4 . Токопровод напряжением выше 1 кВ, выходящий за пределы одной электроустановки, называется протяженным.

ОБЩИЕ ТРЕБОВАНИЯ

2.2.5 . В сетях 6 - 35 кВ промышленных предприятий для передачи в одном направлении мощности более 15 - 20 МВ · А при напряжении 6 кВ, более 25 - 35 МВ · А при напряжении 10 кВ и более 35 МВ · А при напряжении 35 кВ следует применять, как правило, гибкие или жесткие токопроводы преимущественно перед линиями, выполненными из большого числа параллельно прокладываемых кабелей.

Открытую прокладку токопроводов следует применять во всех случаях, когда она возможна по условиям генплана объекта электроснабжения и окружающей среды.

2.2.6 . В местах, где в воздухе содержатся химически активные вещества, воздействующие разрушающе на токоведущие части, поддерживающие конструкции и изоляторы, токопроводы должны иметь соответствующее исполнение или должны быть приняты другие меры их защиты от указанных воздействий.

2.2.7 . Расчет и выбор проводников, изоляторов, арматуры, конструкций и аппаратов токопроводов следует производить как по нормальным условиям работы (соответствие рабочему напряжению и току), так и по условиям работы при коротких замыканиях (см. гл. 1.4 ).

2.2.8 . Токоведущие части должны иметь обозначение и расцветку в соответствии с требованиями гл. 1.1 .

2.2.9 . Токоведущие части токопроводов следует выполнять, как правило, из алюминиевых, сталеалюминиевых и стальных проводов, труб и шин профильного сечения.

2.2.10 . Для заземления токоведущих частей токопроводов должны предусматриваться стационарные заземляющие ножи или переносные заземления в соответствии с требованиями 4.2.25 (см. также 2.2.30 , п. 3).

2.2.11 . Механические нагрузки на токопроводы, а также расчетные температуры окружающей среды следует определять в соответствии с требованиями, приведенными в 4.2.46 - 4.2.49 .

2.2.12 . Компоновка и конструктивное выпол нение токопроводов должны предусматривать возможность удобного и безопасного производства монтажных и ремонтных работ.

2.2.13 . Токопроводы выше 1 кВ на открытом воздухе должны быть защищены от грозовых перенапряжений в соответствии с требованиями 4.2.167 и 4.2.168 .

2.2.14 . В токопровода переменного тока с симметрич ной нагрузкой при токе 1 кА и более ре комендуется, а при токе 1,6 кА и более следует предусматривать меры по снижению потерь электроэнергии в шинодержателях, арматуре и конструкциях от воздействия магнит ного поля.

При токах 2,5 кА и более должны быть, кроме того, предусмотрены меры по снижению и выравниванию индуктивного сопротивления (н апример, расположе ние полос в пакетах по сторонам квадрата, применение спаренных фаз, профильных шин, круглых и квадратных полых труб, транспозиции). Для протяженных гибких токопроводов рекомендуется также применение внутрифазных транспозиций, количество которых должно определяться расчетным путем в зависимости от длины токопровода.

При несимметричных нагрузках значение тока, при котором необходимо предусматривать меры по с нижению потерь электроэнергии от воздействия магнитного поля, должно в каждом отдельном случае определяться расчетом.

2.2.15 . В случаях, когда изменение температуры, вибрация трансформаторов, неравномерная осадка здания и т.п. могут повлечь за собой опасные механические напряже ния в проводниках, изоляторах или других элементах токопроводов, следует предусматривать меры к устранению этих напряжений (компенсаторы или подобные им приспособления). На жестких токопроводах компенсаторы должны устанавливаться также в местах пересечений с температурными и осадочными швами зданий и сооружений.

2.2.16 . Неразъемные соединения токопроводов рекомендуется выполнять при помощи сварки. Для соединения о